Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Reaktion dank „Präzisions-Protein“

16.08.2016

Wissenschaftler von Freier Universität, Charité und Leibniz-Institut für Molekulare Pharmakologie gewinnen neue Erkenntnisse zur Kommunikation zwischen Nervenzellen

Ob wir Autofahren oder Fußball spielen – In vielen Situationen müssen wir blitzschnell auf äußere Reize reagieren. Doch wie wird gewährleistet, dass die Signalübertragung zwischen den Nervenzellen unseres Körpers in Sekundenbruchteilen geschieht? Wissenschaftlerinnen und Wissenschaftler der Freien Universität Berlin, der Charité – Universitätsmedizin Berlin und des Leibniz-Institutes für Molekulare Pharmakologie haben jetzt im Rahmen eines internationalen Forschungsverbundes einen wichtigen Beitrag zur Aufklärung dieses Mechanismus geleistet.


Illustration der Neurotransmitter Freisetzung über Unc13A und Unc13B. Unc13A wird in einem Abstand von 70 nm von der Kalziumquelle (Cac; blau) durch Bruchpilot (BRP; grün) und RBP (rot) positioniert. Unc13B (orange) wird in einem größeren Abstand von 120 nm positioniert. Der Farbübergang von dunkel- zu hellblau im Hintergrund kennzeichnet unterschiedlich hohe Kalziumkonzentrationen, die von Vesikel detektiert werden

Sie fanden heraus, dass ein bestimmtes Protein (Unc13A) an den Verbindungsstellen der Nervenzellen – den Synapsen – für eine extrem präzise molekulare „Verknüpfung“ sorgt und damit für die ultraschnelle Weiterleitung der Reize verantwortlich ist. Die Ergebnisse, die nun in der Fachzeitschrift „Nature Neuroscience“ publiziert wurden, erlauben Einblicke in die Prinzipien, mit denen Synapsen auf molekularer Ebene und mit hoher Genauigkeit Signalübertagung räumlich und zeitlich optimieren.

Nervenzellen kommunizieren mit Hilfe von elektrischen und chemischen Signalen. Die Übertragung der Reize von Zelle zu Zelle erfolgt dabei über spezielle Verbindungsstellen, die Synapsen. Dort wird das ankommende elektrische Signal in ein chemisches Signal umgewandelt und so über den sehr engen synaptischen Spalt, der zwei benachbarte Zellen voneinander trennt, transportiert, um dann auf der anderen Seite wiederum in ein elektrisches Signal umgebildet und weitergeleitet zu werden.

Die chemische Reizweiterleitung erfolgt über Botenstoffe, die so genannten Neurotransmitter, die sich in kleinen Vesikeln (lat. „Bläschen“) in der Synapse befinden. Kommt ein elektrischer Impuls an der Synapse an, verändert er die Spannung in der Zellmembran, wodurch kurzzeitig Kalziumionen in die Synapse strömen.

Die Erhöhung der Kalziumkonzentration führt wiederum dazu, dass sich die Vesikel zum synaptischen Spalt öffnen und die Botenstoffe freisetzen, die dann in der benachbarten Nervenzelle zu einer Weiterleitung des Signals führen, zum Beispiel zur Kontraktion eines Muskels. All dies passiert innerhalb weniger Millisekunden, was unter anderem nur möglich ist, weil der Abstand zwischen Vesikeln und den Kanälen in der Zellmembran, durch die das Kalzium in die Zelle einströmt, genauestens definiert wird.

Wie exakt der Mechanismus geregelt ist, fanden Wissenschaftler des Exzellenzclusters NeuroCure unter Leitung von Prof. Dr. Stephan Sigrist und Dr. Alexander Walter vom Leibniz-Institut für Molekulare Pharmakologie nun am motoneuronalen Nervensystem der Taufliege (Drosophila melanogaster) heraus.

Sie entdeckten, dass das Protein Unc13A die mit dem Botenstoff gefüllten Vesikel mit Nanometer-Präzision an die Kalzium-Quelle – also die Kalziumkanäle in der Zellmembran – koppelt und so die blitzschnelle und effiziente Signalübertragung ermöglicht. Bei der exakten Positionierung der Vesikel spielen noch zwei weitere Proteine eine Rolle, die mit Hilfe der Arbeitsgruppen um Prof. Dr. Ulrich Stelzl von der Universität Graz und Prof. Dr. Markus Wahl von der Freien Universität Berlin identifiziert werden konnten: Wie zwei Mess-Schieber auf einem Lineal sorgen diese beiden Eiweiße dafür, dass der wohl definierte Abstand zwischen Vesikel und der Kalzium-Quelle stets eingehalten wird.

Erstaunlich für die Wissenschaftler war, dass das sehr eng verwandte Protein Unc13B für die Signalübertragung eine untergeordnete Rolle spielt. Dies – so legen die Experimente und theoretischen Berechnungen nah – ist vermutlich darin begründet, dass das Protein nicht so nahe an die Kalzium-Quelle gekoppelt ist. Auch Unc13B wird im Verbund eines Proteinkomplexes an Ort und Stelle gehalten, allerdings auf Distanz.

Die Längenunterschiede bewegen sich lediglich auf der Nanometer-Skala (1 Nanometer = 1 Millionstel Millimeter), sie konnten nur mit einem besonders hochauflösenden Mikroskop im Laboratorium von Chemie-Nobelpreisträger Prof. Dr. Stefan Hell vom Max Plack Institut für Biophysikalische Chemie Göttingen überhaupt detektiert werden. Dennoch führe das zu vollkommen unterschiedlichen Funktionalitäten, sind die Wissenschaftler überzeugt: Während Unc13A eine schnelle und effiziente Signalleitung ermöglicht, spielt Unc13B aufgrund seiner minimal größeren Entfernung von der Kalzium-Quelle hierbei kaum eine Rolle. Es werde aber wohl in der Entwicklung der Synapse benötigt.

Mit Ihrer Arbeit sind die Forscher einem sehr wesentlichen, jedoch mechanistisch noch wenig verstandenen Prinzip auf die Spur gekommen: wie Synapsen durch räumliche Kontrolle der Vesikelposition ihre Transmissionseigenschaften steuern.

Das Paper ist veröffentlicht in: Nature Neuroscience 10.1038/nn.4364.

Ansprechpartner für weitere Informationen:

Dr. Alexander M. Walter
Molecular and Theoretical Neuroscience
Leibniz Institute für Moleculare Pharmakologie
Charité Campus Mitte
Charitéplatz 1
10117 Berlin
Tel.: +49 (0)30-450-639-026
awalter@fmp-berlin.de

Prof. Dr. Stephan Sigrist
Institut für Biologie / Genetik
NeuroCure Exzellenzcluster
Takustraße 6
14195 Berlin,
Tel.: +49 (0)30-838-56940
stephan.sigrist@fu-berlin.de

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Blut dank neuer Technik
14.12.2018 | Medizinische Hochschule Hannover

nachricht Neue Chancen für den Tierschutz: Effizientes Testverfahren zum Betäubungsmittel-Einsatz bei Fischen
14.12.2018 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungsnachrichten

Rittal heizt ein in Sachen Umweltschutz - Rittal Lackieranlage sorgt für warme Verwaltungsbüros

14.12.2018 | Unternehmensmeldung

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics