Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Reaktion dank „Präzisions-Protein“

16.08.2016

Wissenschaftler von Freier Universität, Charité und Leibniz-Institut für Molekulare Pharmakologie gewinnen neue Erkenntnisse zur Kommunikation zwischen Nervenzellen

Ob wir Autofahren oder Fußball spielen – In vielen Situationen müssen wir blitzschnell auf äußere Reize reagieren. Doch wie wird gewährleistet, dass die Signalübertragung zwischen den Nervenzellen unseres Körpers in Sekundenbruchteilen geschieht? Wissenschaftlerinnen und Wissenschaftler der Freien Universität Berlin, der Charité – Universitätsmedizin Berlin und des Leibniz-Institutes für Molekulare Pharmakologie haben jetzt im Rahmen eines internationalen Forschungsverbundes einen wichtigen Beitrag zur Aufklärung dieses Mechanismus geleistet.


Illustration der Neurotransmitter Freisetzung über Unc13A und Unc13B. Unc13A wird in einem Abstand von 70 nm von der Kalziumquelle (Cac; blau) durch Bruchpilot (BRP; grün) und RBP (rot) positioniert. Unc13B (orange) wird in einem größeren Abstand von 120 nm positioniert. Der Farbübergang von dunkel- zu hellblau im Hintergrund kennzeichnet unterschiedlich hohe Kalziumkonzentrationen, die von Vesikel detektiert werden

Sie fanden heraus, dass ein bestimmtes Protein (Unc13A) an den Verbindungsstellen der Nervenzellen – den Synapsen – für eine extrem präzise molekulare „Verknüpfung“ sorgt und damit für die ultraschnelle Weiterleitung der Reize verantwortlich ist. Die Ergebnisse, die nun in der Fachzeitschrift „Nature Neuroscience“ publiziert wurden, erlauben Einblicke in die Prinzipien, mit denen Synapsen auf molekularer Ebene und mit hoher Genauigkeit Signalübertagung räumlich und zeitlich optimieren.

Nervenzellen kommunizieren mit Hilfe von elektrischen und chemischen Signalen. Die Übertragung der Reize von Zelle zu Zelle erfolgt dabei über spezielle Verbindungsstellen, die Synapsen. Dort wird das ankommende elektrische Signal in ein chemisches Signal umgewandelt und so über den sehr engen synaptischen Spalt, der zwei benachbarte Zellen voneinander trennt, transportiert, um dann auf der anderen Seite wiederum in ein elektrisches Signal umgebildet und weitergeleitet zu werden.

Die chemische Reizweiterleitung erfolgt über Botenstoffe, die so genannten Neurotransmitter, die sich in kleinen Vesikeln (lat. „Bläschen“) in der Synapse befinden. Kommt ein elektrischer Impuls an der Synapse an, verändert er die Spannung in der Zellmembran, wodurch kurzzeitig Kalziumionen in die Synapse strömen.

Die Erhöhung der Kalziumkonzentration führt wiederum dazu, dass sich die Vesikel zum synaptischen Spalt öffnen und die Botenstoffe freisetzen, die dann in der benachbarten Nervenzelle zu einer Weiterleitung des Signals führen, zum Beispiel zur Kontraktion eines Muskels. All dies passiert innerhalb weniger Millisekunden, was unter anderem nur möglich ist, weil der Abstand zwischen Vesikeln und den Kanälen in der Zellmembran, durch die das Kalzium in die Zelle einströmt, genauestens definiert wird.

Wie exakt der Mechanismus geregelt ist, fanden Wissenschaftler des Exzellenzclusters NeuroCure unter Leitung von Prof. Dr. Stephan Sigrist und Dr. Alexander Walter vom Leibniz-Institut für Molekulare Pharmakologie nun am motoneuronalen Nervensystem der Taufliege (Drosophila melanogaster) heraus.

Sie entdeckten, dass das Protein Unc13A die mit dem Botenstoff gefüllten Vesikel mit Nanometer-Präzision an die Kalzium-Quelle – also die Kalziumkanäle in der Zellmembran – koppelt und so die blitzschnelle und effiziente Signalübertragung ermöglicht. Bei der exakten Positionierung der Vesikel spielen noch zwei weitere Proteine eine Rolle, die mit Hilfe der Arbeitsgruppen um Prof. Dr. Ulrich Stelzl von der Universität Graz und Prof. Dr. Markus Wahl von der Freien Universität Berlin identifiziert werden konnten: Wie zwei Mess-Schieber auf einem Lineal sorgen diese beiden Eiweiße dafür, dass der wohl definierte Abstand zwischen Vesikel und der Kalzium-Quelle stets eingehalten wird.

Erstaunlich für die Wissenschaftler war, dass das sehr eng verwandte Protein Unc13B für die Signalübertragung eine untergeordnete Rolle spielt. Dies – so legen die Experimente und theoretischen Berechnungen nah – ist vermutlich darin begründet, dass das Protein nicht so nahe an die Kalzium-Quelle gekoppelt ist. Auch Unc13B wird im Verbund eines Proteinkomplexes an Ort und Stelle gehalten, allerdings auf Distanz.

Die Längenunterschiede bewegen sich lediglich auf der Nanometer-Skala (1 Nanometer = 1 Millionstel Millimeter), sie konnten nur mit einem besonders hochauflösenden Mikroskop im Laboratorium von Chemie-Nobelpreisträger Prof. Dr. Stefan Hell vom Max Plack Institut für Biophysikalische Chemie Göttingen überhaupt detektiert werden. Dennoch führe das zu vollkommen unterschiedlichen Funktionalitäten, sind die Wissenschaftler überzeugt: Während Unc13A eine schnelle und effiziente Signalleitung ermöglicht, spielt Unc13B aufgrund seiner minimal größeren Entfernung von der Kalzium-Quelle hierbei kaum eine Rolle. Es werde aber wohl in der Entwicklung der Synapse benötigt.

Mit Ihrer Arbeit sind die Forscher einem sehr wesentlichen, jedoch mechanistisch noch wenig verstandenen Prinzip auf die Spur gekommen: wie Synapsen durch räumliche Kontrolle der Vesikelposition ihre Transmissionseigenschaften steuern.

Das Paper ist veröffentlicht in: Nature Neuroscience 10.1038/nn.4364.

Ansprechpartner für weitere Informationen:

Dr. Alexander M. Walter
Molecular and Theoretical Neuroscience
Leibniz Institute für Moleculare Pharmakologie
Charité Campus Mitte
Charitéplatz 1
10117 Berlin
Tel.: +49 (0)30-450-639-026
awalter@fmp-berlin.de

Prof. Dr. Stephan Sigrist
Institut für Biologie / Genetik
NeuroCure Exzellenzcluster
Takustraße 6
14195 Berlin,
Tel.: +49 (0)30-838-56940
stephan.sigrist@fu-berlin.de

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen
17.08.2018 | Leibniz Universität Hannover

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics