Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schnell ist die Evolution?

30.12.2010
Ein Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation bestimmt den Einfluss zufälliger Mutationen

In der Evolution herrscht der Zufall: Einzelne, zufällig auftretende Mutationen, die zunächst nur wenige Exemplare einer Art betreffen, können nach und nach eine gesamte Population verändern und maßgeblich prägen. Bisher konnten Wissenschaftler den entscheidenden Einfluss solch seltener Mutationen jedoch nicht präzise mathematisch beschreiben - und somit keine exakten Vorhersagen für die Evolutionsgeschwindigkeit treffen.


Da sich eine Population mit der Zeit immer besser an ihre Umgebung anpasst, verschiebt sich die Verteilung der Fortpflanzungsraten zu immer höheren Werten - hier von niedrig (schwarz) zu hoch (rot). Die genaue Ausbreitung dieser Welle hängt von den seltenen Fluktuationen an der Wellenfront ab. Das Hintergrundbild wurde im Norden Thailands in der Nähe von Chiang Mai aufgenommen. Bild: MPIDS

Dem Physiker Oskar Hallatschek vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen ist es nun erstmals gelungen, dieses Problem zu lösen. Die neue Herangehensweise lässt sich dabei nicht nur auf Evolutionsvorgänge anwenden. Auch für das Verständnis der Geschwindigkeit chemischer Reaktionen und der Ausbreitung von Krankheitserregern bietet die Methode neue Impulse. (PNAS, 27. Dezember 2010)

Im Verlaufe ihrer Evolution passt sich jede Population ständig ihrer Umgebung an. Schärfere Augen, spitzere Krallen oder eine höhere Ausdauer - oft sind es zufällige Mutationen einzelner Individuen, die am Anfang einer solchen Entwicklung stehen. Erweist sich eine solche Mutation als vorteilhaft im Kampf ums Überleben, können sich ihre Träger schneller und effektiver vermehren. Als Folge nimmt die Anzahl der Tiere, Pflanzen oder Viren, die sich durch diese Mutation auszeichnen, mit der Zeit zu - bis eine weitere spontane Genveränderung neue Vorteile bietet. "Mit der Zeit verschiebt sich somit die Verteilung der Fortpflanzungsraten innerhalb einer Population immer weiter zu höheren Werten hin", erklärt Oskar Hallatschek vom MPIDS. Die Spezies vermehrt sich immer schneller.

Mit welcher Geschwindigkeit sich dieser Anpassungsprozess vollzieht, ließ sich bisher nicht zuverlässig berechnen. "Die zufälligen Mutationen entsprechen aus mathematischer Sicht statistischen Fluktuationen", so Hallatschek. "Und diese sind in Formeln kaum in den Griff zu bekommen." Vernachlässigt man hingegen die statistischen Fluktuationen, ergibt sich, dass sich der Anpassungsprozess der Population immer weiter beschleunigt. Dies entspricht jedoch nicht den Beobachtungen in der Natur. Stattdessen gehen Wissenschaftler davon aus, dass sich nach und nach eine konstante Anpassungsgeschwindigkeit einstellt.

Ein geschickter Kniff verhalf dem Göttinger Forscher nun zum Erfolg. Während ältere Modelle die Anzahl der Individuen innerhalb einer Population als konstant voraussetzen, lässt das Modell von Hallatschek kleine Schwankungen der Populationsgröße zu. "Natürlich begrenzt jeder Lebensraum die Anzahl der Tiere, die dort leben können", so der Physiker. Dennoch können beispielsweise in einem milden Winter in einem abgeschlossenen Waldgebiet einige Wildschweine mehr überleben als in einer besonders kalten Saison. Diesem Umstand trägt das neue Modell Rechnung. Die Gleichungen nehmen dadurch eine Form an, die sich deutlich leichter lösen lässt.

In einem ersten Schritt konnte Hallatschek diese Methode nun auf die Evolution bestimmter RNA-Viren anwenden. Diese zeichnen sich dadurch aus, dass Mutationen besonders schnell und häufig auftreten. Insgesamt ergaben die Rechnungen Vorhersagen, die mit bisherigen Computersimulationen gut übereinstimmen.

Doch auch in anderen Bereichen lässt sich das neue Lösungsverfahren einsetzen. Voraussetzung ist nur, dass sich eine abzählbare Größe - wie etwa einzelne Tiere - wellenartig ausbreitet und an ihrer Wellenfront zufälligen Schwankungen unterliegt. Dies ist auch bei der Verteilung einzelner Ionen bei einer chemischen Reaktion der Fall oder bei der Verbreitung ansteckender Krankheiten durch einzelne kranke Individuen.

Originalveröffentlichung:

Oskar Hallatschek
The noisy edge of traveling waves
Proceedings of the National Academy of Sciences, Early Edition, 27. Dezember 2010, doi:10.1073/pnas.1013529108

Weitere Informationen erhalten Sie von:

Dr. Birgit Krummheuer, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: 0551 5176-668, Mobil: 0173 3958625
E-Mail: birgit.krummheuer@ds.mpg.de
Dr. Oskar Hallatschek
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: 0551 5176-670
E-Mail: oskar.hallatschek@ds.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics