Schlank-Gen reguliert Körperfett

Die Forscher haben das Gen daher auf den Namen „schlank“ getauft. Säugetiere verfügen über eine Gruppe von Erbanlagen, die „schlank“ strukturell sehr ähneln. Möglicherweise erfüllen sie eine ähnliche Funktion im Energiestoffwechsel.

Die Forscher hoffen daher auf neue Präparate, mit denen sich Fettleibigkeit bekämpfen lässt. Ihre Studie ist in der Zeitschrift „The EMBO Journal“ erschienen (doi: 10.1038/emboj.2009.305).

Wenn Forscher die Funktion eines Gens aufklären, dürfen sie die Erbanlage benennen. Bei der Fruchtfliege Drosophila gilt dabei eine paradoxe Konvention: Die Namen weisen stets darauf hin, wie die Fliege im Falle eines Defekts des entsprechenden Gens aussieht. So auch im Falle des schlank-Gens: Ist es intakt, kann die Fliegenlarve Speicherfett aufbauen – sie wird dick. „Larven mit einer schlank-Mutation bleiben dagegen dünn“, erklärt Professor Dr. Michael Hoch von der Universität Bonn. „Im Extremfall führt der Defekt sogar zum Tod.“

Der Entwicklungsbiologe hat zusammen mit Privatdozent Dr. Reinhard Bauer und weiteren Mitarbeitern untersucht, was „schlank“ genau macht. Ihrer Studie zufolge enthält das Gen die Bauanleitung einer so genannten Ceramid-Synthase. Ceramide dienen als Rohstoff für die hauchdünnen Membranen, die sämtliche Zellen im Körper umschließen. Schlank wirkt zudem regulierend: Es fördert die Fettsynthese und hemmt gleichzeitig die Fettmobilisierung aus dem Fettspeicher.

Mäuse-Gen rettet Fliegenlarven

Das ist möglicherweise nicht nur in der Fruchtfliege so. Auch der Mensch produziert Ceramid-Synthasen – allerdings nicht wie Drosophila nur eine, sondern gleich sechs verschiedene. Er verfügt dazu über eine Gruppe von Erbanlagen, die so genannten Lass-Gene. Ceramid-Synthasen sind für Tiere extrem wichtig. Mutationen in den entsprechenden Genen führen zu schwerwiegenden Stoffwechsel-Defekten und zu Fehlfunktionen von Organsystemen. Deshalb sehen unsere Lass-Gene dem schlank-Gen der Fruchtfliege erstaunlich ähnlich.

Die Ähnlichkeit geht so weit, dass Lass-Gene aus der Maus in Fliegen-Mutanten das defekte schlank-Gen zum Teil kompensieren können. „Wir haben ein Mäuse-Lass-Gen in mutante Drosophila-Larven eingeführt“, sagt Hoch. „Normalerweise starben die Larven direkt nach dem Schlüpfen. Dank des Lass-Gens bauten sie wieder Körperfett auf und überlebten bis ins nächste Entwicklungsstadium.“

Die Lass-Gene der Säugetiere wurden bislang noch nicht mit der Regulation des Fettstoffwechsels in Verbindung gebracht. „Aufgrund der großen Parallelen zu schlank halten wir eine solche Funktion aber für sehr wahrscheinlich“, vermutet Professor Hoch. „Wenn dem so ist, wären sie ein viel versprechender Ansatzpunkt für neue Medikamente gegen Fettleibigkeit.“

Kontakt:
Professor Dr. Michael Hoch
Life & Medical Sciences Institut (LIMES)
Telefon: 0228/73-4409 oder -4621
E-Mail: m.hoch@uni-bonn.de

Media Contact

Frank Luerweg idw

Weitere Informationen:

http://www.uni-bonn.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer