Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schädel-Hirn-Trauma: Kieler Molekül könnte Reparatur von Nervenzellen vorantreiben

24.03.2020

Internationales Forschungsteam hat herausgefunden, wie durch die Beeinflussung von Immunzellen die Heilung nach Hirnverletzungen verbessert werden kann / Publikation in Cell

Bei einem Schädel-Hirn-Trauma sterben je nach Schwere der Verletzung Nervenzellen im Gehirn in unterschiedlichem Umfang ab. Solche Hirnverletzungen können Konzentration, Entscheidungsfähigkeit, Lernen und Erinnerung einschränken.


Beim Designer-Molekül “Hyper-IL-6” ist ein IL-6-Molekül fest mit seinem spezifischen löslichen Rezeptor verbunden. Hyper-Il-6 kann so sehr wirksam den IL-6-trans-Signalweg aktivieren.

S. Rose-John, Uni Kiel


Professor Stefan Rose-John, Mitglied im Exzellenzcluster "Precision Medicine in Chronic Inflammation" und Direktor des Biochemischen Instituts an der Christian-Albrechts-Universität zu Kiel (CAU).

T. Böschen, Uni Kiel

Ein Molekül, das Professor Stefan Rose-John, Mitglied im Exzellenzcluster „Präzisionsmedizin für chronische Entzündungserkrankungen“ (PMI) und Leiter des Biochemischen Instituts der Christian-Albrechts-Universität zu Kiel (CAU), entwickelt hat, könnte einen Mechanismus in Gang bringen, der diese Schädigungen wieder repariert.

Darauf deuten neue Forschungsergebnisse hin, die Rose-John gemeinsam mit internationalen Forschenden unter Leitung der University of Queensland im australischen Brisbane kürzlich im renommierten Fachmagazin Cell veröffentlicht hat.

Die Forschenden untersuchten an Mäusen, wie das Immunsystem im Gehirn nach einer Verletzung mit den Hirnnervenzellen interagiert und wie dies die Lern- und Erinnerungsfähigkeit beeinflusst. „Bisher waren wir davon ausgegangen, dass bestimmte Immunzellen im Gehirn, die Mikroglia, nach einer Hirnverletzung Entzündungen im Gehirn vorantreiben und so zu kognitiven Einschränkungen führen“, berichtet die leitende Autorin der Arbeit, Dr. Jana Vukovic von der University of Queensland.

„Als wir aber Mikroglia bei Mäusen gezielt entfernten, waren wir überrascht, dass sich ihr Verhalten und ihre Fähigkeit, Hirngewebe zu reparieren, dadurch nicht verbessert haben“, so Vukovic weiter. Das Forschungsteam hat daraufhin in Versuchstieren die verstärkte Bildung von neuen Mikroglia angeregt und festgestellt, dass dies die Reparatur der Nervenzellen antreibt.

„Die neuen Mikroglia verbesserten die Lern- und Gedächtniskapazität der Mäuse, bewahrten den Gewebeverlust und stimulierten die Bildung von neuen Neuronen“, sagt Vukovic.

Interleukin-6 treibt Reparatur voran

Treibende Kraft hinter diesem regenerierenden Prozess ist offenbar das Signalmolekül Interleukin-6 (IL-6): Als die Forschenden es im Versuch komplett blockierten, verschwand auch der regenerierende Effekt der Mikroglia. Erhöhten sie die Menge an vorhandenem IL-6, konnten sie den Prozess stimulieren. Das Signalmolekül ist ein wichtiger Botenstoff, der zum Beispiel bei Entzündungsreaktionen Alarm schlägt, in dem es vermehrt ausgeschüttet wird und so Immunreaktionen reguliert. Er kann über zwei verschiedene Signalwege wirken: Beim „klassischen“ Signalweg bindet IL-6 spezifisch an einen Rezeptor, der nur auf bestimmten Zellen, wie etwa Leberzellen, vorkommt.

Gemeinsam binden sie dann an eine weitere Rezeptoruntereinheit auf der selben Zelle, das sogenannte gp130 Protein, und lösen so eine Reaktion in der Zelle aus. Über den alternativen sogenannten „IL-6-trans-Signalweg“ hingegen kann IL-6 unter bestimmten Umständen auf jede Zelle im Körper wirken.

Der spezifische IL-6-Rezeptor kommt auch gelöst im Blut vor. IL-6 kann an diesen freien, im Blut zirkulierenden Rezeptor binden. Gemeinsam bindet der Komplex dann an einen gp130-Rezeptor, der auf allen Zellen vorhanden ist, und löst dadurch in der Zelle eine Reaktion aus.

Ein Designer-Molekül als molekulares Diagnose-Werkzeug

Rose-John hat diesen an vielen physiologischen Prozessen beteiligten trans-Signalweg entdeckt und Pionierarbeit in der Erforschung seiner zentralen Bedeutung geleistet. „Wir haben in den letzten Jahren einige molekulare Werkzeuge entwickelt, mit denen wir testen können, welcher Signalweg in einem bestimmten Krankheitsbild aktiv ist“, erklärt Rose-John.

Zu diesen molekularen Werkzeugen gehört das künstliche Molekül „Hyper-IL-6“, welches auch in der aktuellen Studie zum Einsatz kam. Es besteht aus dem Signalmolekül Interleukin 6 (IL-6) und seinem spezifischen Rezeptor in gelöster, also nicht an eine Zelle gebundenen, Form.

Zusammen bilden sie ein vollkommen neues Molekül, das es so in der Natur nicht gibt. Dieses neue Molekül stimuliert genau wie seine natürlich vorkommenden Einzel-Bestandteile den IL-6-trans-Signalweg, ist dabei aber deutlich wirksamer, da sich IL-6 und Rezeptor nicht mehr im Blut „finden“ müssen, wie in der Natur.

Regenerierung über IL-6-trans-Signalweg

In der aktuellen Studie zeigte Hyper-IL-6 einen positiven Effekt: Nach Gabe des Moleküls bei verletzten Nervenzellen bildeten sich wieder mehr Mikroglia, was wiederum zur Neubildung von Nervenzellen und schließlich zur Verbesserung der Symptome führte. „Die Ergebnisse zeigen, dass der neu entdeckte regenerierende Effekt der Mikroglia nach Hirnverletzungen über den trans-Signalweg von IL-6 ausgelöst wird“, sagt Rose-John. „Diese Beobachtung ist auch deshalb interessant, da bisher vollkommen unbekannt war, wie IL-6 im Gehirn wirkt.“

Die Ergebnisse könnten in Zukunft die Entwicklung neuer Medikamente zur Linderung von Lern- und Gedächtnisdefiziten nach Schädigungen von Nervenzellen ermöglichen. Damit bergen sie vielversprechende Potenziale zur Behandlung einer Vielzahl von neurologischen Erkrankungen wie Hirnverletzungen, Demenz oder anderen neurodegenerativen Krankheiten.

Fotos stehen zum Download bereit:

https://www.precisionmedicine.de/de/pressemitteilungen/pressebilder/05-Hyper-IL-...
Beim Designer-Molekül “Hyper-IL-6” ist ein IL-6-Molekül fest mit seinem spezifischen löslichen Rezeptor verbunden. Das neue Molekül kann so deutlich effektiver als beide Moleküle zusammen den IL-6-trans-Signalweg aktivieren.
© S. Rose-John, Uni Kiel

https://www.precisionmedicine.de/de/pressemitteilungen/portraitbilder/rose-john....
Professor Stefan Rose-John, Mitglied im Exzellenzcluster „Precision Medicine in Chronic Inflammation“, Direktor des Biochemischen Instituts an der Christian-Albrechts-Universität zu Kiel (CAU) und Leiter des Sonderforschungsbereichs 877 „Proteolyse als regulatorisches Ereignis der Pathophysiologie“.
© T. Böschen, Uni Kiel.

Der Exzellenzcluster „Präzisionsmedizin für chronische Entzündungserkrankungen/Precision Medicine in Chronic Inflammation“ (PMI) wird von 2019 bis 2025 durch die Exzellenzstrategie des Bundes und der Länder gefördert (ExStra). Er folgt auf den Cluster Entzündungsforschung „Inflammation at Interfaces“, der bereits in zwei Förderperioden der Exzellenzinitiative (2007-2018) erfolgreich war. An dem neuen Verbund sind rund 300 Mitglieder in acht Trägereinrichtungen an vier Standorten beteiligt: Kiel (Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein, Muthesius Kunsthochschule, Institut für Weltwirtschaft und Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik), Lübeck (Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein), Plön (Max-Planck-Institut für Evolutionsbiologie) und Borstel (Forschungszentrum Borstel - Leibniz Lungenzentrum).

Ziel ist es, die vielfältigen Forschungsansätze zu chronisch entzündlichen Erkrankungen von Barriereorganen in ihrer Interdisziplinarität verstärkt in die Krankenversorgung zu übertragen und die Erfüllung bisher unbefriedigter Bedürfnisse von Erkrankten voranzutreiben. Drei Punkte sind im Zusammenhang mit einer erfolgreichen Behandlung wichtig und stehen daher im Zentrum der Forschung von PMI: die Früherkennung von chronisch entzündlichen Krankheiten, die Vorhersage von Krankheitsverlauf und Komplikationen und die Vorhersage des individuellen Therapieansprechens.
Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen
Wissenschaftliche Geschäftsstelle, Leitung: Dr. habil. Susanne Holstein
Postanschrift: Christian-Albrechts-Platz 4, D-24118 Kiel
Telefon: (0431) 880-4850, Telefax: (0431) 880-4894
Twitter: PMI @medinflame

Pressekontakt:
Frederike Buhse
Telefon: (0431) 880 4682
E-Mail: fbuhse@uv.uni-kiel.de
https://precisionmedicine.de

Link zur Meldung: https://www.precisionmedicine.de/de/detailansicht/news/05-il6-bei-hirnverletzung

Wissenschaftliche Ansprechpartner:

Prof. Stefan Rose-John
Geschäftsführender Direktor Biochemisches Institut,
Christian-Albrechts-Universität zu Kiel (CAU), Medizinische Fakultät
0431/880-3336
rosejohn@biochem.uni-kiel.de

Originalpublikation:

Emily F. Willis, …Stefan Rose-John, Marc J. Ruitenberg, and Jana Vukovic: Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner, Cell (2020).
https://doi.org/10.1016/j.cell.2020.02.013

Frederike Buhse | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://precisionmedicine.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Mutation senkt Energieverschwendung bei Pflanzen
08.04.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics