Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Säure in den Wein kommt

05.02.2010
Ohne die Protonen-Pumpen der Pflanzen gäbe es im Wein keine Säure. Wichtig sind diese Pumpen generell für die Vitalität von Pflanzen, wie Forscher aus Würzburg und Heidelberg in der renommierten Zeitschrift "Proceedings" der Akademie der Wissenschaften der USA berichten.

Bei der Photosynthese produzieren Pflanzen in der Regel mehr Nährstoffe als sie selber brauchen. Den Überschuss lagern sie ein - unter anderem in ihren Vakuolen. Diese Vorratskammern machen in den Zellen 70 bis 90 Prozent des Volumens aus. Sie sind mit einer wässrigen Lösung von Ionen und Nährstoffen gefüllt und von einer Membran umgeben.

Zuckerrüben häufen in ihren Vakuolen Zucker an, Weintrauben und andere Früchte speichern dort zusätzlich zum Zucker auch Fruchtsäuren. Mit welchen Inhaltsstoffen die Vakuolen gefüllt werden, hängt von der Ausstattung ihrer Membranen mit speziellen Transportern ab. Denn einfach so gelangen Zucker und Säuren nicht in die Vorratskammern hinein - die Pflanze verfrachtet sie gezielt dorthin, und das gelingt ihr nur mit der Hilfe von Protonen-Pumpen.

Säuregrad von Wein ist durch Protonen bestimmt

Unter Aufwendung von Energie schaffen diese Pumpen Protonen in die Vakuole hinein. "Der Säuregrad von Wein zum Beispiel geht allein auf die im Vakuolensaft angehäuften Protonen zurück", sagt Professor Rainer Hedrich, Biophysiker an der Universität Würzburg. Rund 90 Prozent des Traubensafts stammen aus den Vakuolen.

Die Aktivität der Pumpen sorgt dafür, dass die Vakuole viel mehr Protonen enthält als der Zellsaft. In diesem Konzentrationsgefälle steckt Energie - die Protonen drängen mit aller Macht wieder hinaus aus der überfüllten Vakuole, ähnlich wie Luft aus einem prall aufgeblasenen Ballon. Hier kommen nun die speziellen Transporter ins Spiel, die in der Vakuolenmembran sitzen: Sie nutzen den energetisch begünstigten Ausstrom von Protonen, um nach dem Austauschprinzip gleichzeitig Zucker und andere Moleküle in die Vakuole zu schaffen.

"Dieses schrittweise Umsetzen von Energie ist ein allgemeines Prinzip in der Biologie. Speicherorgane wie Zuckerrüben und Früchte, aber auch Blätter können damit Inhaltsstoffe um das Hundertfache und darüber hinaus anreichern", so Hedrich. Die Pflanzen schaffen sich auf diese Weise wertvolle Ressourcen für Zeiten, in denen Mangel herrscht - zum Beispiel nachts, wenn die Photosynthese zum Erliegen kommt.

Wie wichtig Protonen-Pumpen für die Vitalität und die Produktivität von Pflanzen sind, beschreiben Rainer Hedrich und Professorin Karin Schumacher von der Universität Heidelberg gemeinsam in der Zeitschrift "Proceedings". Die beiden Wissenschaftler kooperieren in einer überregionalen Vakuolen-Forschergruppe, die von der Deutschen Forschungsgemeinschaft (DFG) finanziell gefördert wird.

Zwei verschiedene Protonen-Pumpen füllen die Vakuole

Zwei Typen von Protonen-Pumpen gibt es in der Vakuolenmembran. Der eine Typ braucht die energiereiche Phosphatverbindung ATP als Brennstoff für seine Aktivität, der andere verwendet dafür das so genannte Pyrophosphat (PP).

Die Aktivität beider Pumpen hat Rainer Hedrich erstmals gemessen - 1986 als Postdoktorand am Max-Planck-Institut für Biophysikalische Chemie in Göttingen. Wie die zwei Pumpentypen miteinander in Verbindung stehen und welche relative Bedeutung ihnen zukommt, war bislang weitgehend unklar.

Um diese Fragen zu klären, haben Hedrich und Schumacher jetzt an der genetischen Modellpflanze Arabidopsis (Ackerschmalwand) die Gene für die ATP-abhängige Protonen-Pumpe ausgeschaltet. So war in den Pflanzen nur noch der andere Pumpentyp aktiv.

Ohne Pumpen: Stress senkt die Produktivität

"Unter optimalen Wachstumsbedingungen wirkte sich das Fehlen der ATP-abhängigen Pumpe zunächst nicht auf das Gedeihen der Pflanzen aus", erklärt Hedrich. Wurden die Pflanzen aber bestimmten Stressbedingungen ausgesetzt, wie Stickstoffmangel und Schwermetallbelastung, blieben sie in Wachstum und Produktivität deutlich zurück.

Erst unter den erschwerten Lebensbedingungen machte sich das Fehlen der Pumpen bemerkbar. Mit nur einem Typ der Protonen-Pumpen kann die Pflanze ihre Vakuolen offenbar nicht mehr so gut mit Ionen und Stoffwechselprodukten füllen, dass sie gut genug gegen Stress gewappnet wäre.

Angespornt durch diese Entdeckung wollen Rainer Hedrich und Karin Schumacher als nächstes versuchen, Pflanzen zu erzeugen, die vermehrt bestimmte Protonen-Pumpen herstellen und dadurch Stressperioden besser überstehen.

Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Melanie Krebs, Diana Beyhl, Esther Görlich, Khaled A. S. Al-Rasheid, Irene Marten, York-Dieter Stierhof, Rainer Hedrich, and Karin Schumacher; Proc Nat Acad Sci (USA), published online before print January 26, 2010; doi:10.1073/pnas.0913035107

Zur Person von Rainer Hedrich

Professor Rainer Hedrich gehört mit seinen Arbeiten über Ionenkanäle und -pumpen seit über 20 Jahren zu den weltweit bedeutendsten Wissenschaftlern auf dem Gebiet des Membrantransports. Die Faculty of 1000 stuft seine Arbeiten regelmäßig als besonders lesenswert ein. Das ISI Web of Knowledge rechnet ihn in der Sektion Animal and Plant Sciences zu den besonders häufig zitierten Forschern. Erst im Januar 2010 hat der Europäische Forschungsrat ihm einen der begehrten ERC Advanced Grants verliehen: Diese Auszeichnung ist mit 2,5 Millionen Euro dotiert.

Mit der Analyse von Ionenkanälen und -pumpen mit hoch empfindlichen biophysikalischen Verfahren ist Rainer Hedrich bestens vertraut. Im Labor des Nobelpreisträgers Professor Erwin Neher gelang ihm 1984 noch während seiner Doktorarbeit erstmals der funktionelle Nachweis pflanzlicher Ionenkanäle. Seit dieser Entdeckung mit Hilfe der Patch-Clamp-Technik hat er viele unterschiedliche Ionenkanaltypen und -pumpen sowohl in der pflanzlichen Zellmembran als auch in den Membranen verschiedener Zellorganellen identifiziert und charakterisiert. Sein Fachwissen über die molekulare und biophysikalische Analyse von Transportvorgängen macht ihn zum gesuchten Kooperationspartner in Sonderforschungsbereichen, Graduiertenkollegs und nationalen sowie internationalen Forschungsverbünden.

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Molekulare Pflanzenphysiologie und Biophysik) der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics