RUB-Forscher entlarven zellulären Spannungssensor

Was aus einer Stammzelle wird, das bestimmen Signale von außen, unter anderem elektrische Felder und Spannungsunterschiede. Bochumer Biochemiker haben auf diesem bisher wenig erforschten Signalweg nun einen zellulären Spannungssensor entlarvt: Der Kaliumkanal KCNQ1 vermittelt die bioelektrischen Informationen an die Zelle.

Manipulationen daran bringen die Entwicklung durcheinander Über ihre Entdeckung berichten die Forscher um PD Dr. Guisgard Seebohm (Rezeptorchemie) in der aktuellen online-Ausgabe der Proceedings of the National Academy of Science (PNAS).

Stammzellen spezialisieren sich – aber auf welches Signal hin?

Stammzellen der Neuralleiste differenzieren sich in Wirbeltieren zu einer Reihe verschiedener Zellen wie Gefäßmuskelzellen, periphere Nervenzellen, Knorpelzellen, Knochenzellen, hormonproduzierenden Zellen und Pigmentzellen, welche Schlüsselrollen in der Entwicklung des Gesichtes, des Herzens und anderer Gewebe übernehmen. Die Entwicklung von Stammzellen zu den verschiedenen spezialisierten Zelltypen des sich entwickelnden Embryos wird durch komplexe Wechselwirkungen von Zellen untereinander gesteuert. Stammzellen haben genau definierte, in engen Grenzen gehaltene elektrophysiologische Eigenschaften, welche die Grundlage für spezifische zelluläre Verständigung sein könnten. Bisher war die Bedeutung elektrischer Signale für Stammzellen unklar. Zudem war unbekannt, wie die elektrophysiologischen Signale auf die Zellen wirken.

Froscheier bringen Licht ins Dunkel

Licht in diese Frage brachten die Arbeiten der Bochumer Forscher, die sie an Embryonen des afrikanischen Krallenfrosches durchführten. Da die elektrischen Eigenschaften einer Zelle durch Ionenkanäle und Transporter in der Zellmembran bestimmt werden, durch die elektrisch geladene Teilchen hinein- und herausgelangen, brachten sie Erbmaterial von Ionenkanälen und Transportern in die Froscheier ein und beobachteten deren weitere Embryonalentwicklung. Neben diesen genetischen Manipulationen beeinflussten sie die Ionenkanäle und Transporter auch pharmakologisch, indem sie die Froschembryonen so genannten Ionenkanalmodulatoren aussetzten.

Manipulationen am Kaliumkanal und seine Auswirkungen

Dabei entdeckten sie, dass der spannungsabhängige Kaliumkanal KCNQ1 (auch Kv7.1 und KvLQT1 genannt) die Eigenschaften einer spezifischen Stammzellpopulation der Neuralleiste kontrolliert. Dieser Kaliumkanal gehört zu einer „alten“ Kanalfamilie, das heißt, es gibt ihn seit einer frühen Phase der Evolution und daher in vermutlich allen Wirbeltieren. Fehlfunktionen sind bei Menschen an komplexen Krankheiten wie dem ererbten plötzlichen Herztod, Schwerhörigkeit und Epilepsie beteiligt. „Werden die Funktionen dieser Kanäle in den sich entwickelnden Embryonen durch genetische Manipulationen oder pharmakologische Wirkstoffe verändert, so teilen sich die Pigmentzellen der Neuralleiste vermehrt und wandern in Gewebe ein, in denen sie normalerweise nicht zu finden sind“, beschreibt Dr. Seebohm seine Erkenntnisse. Die Forscher konnten auch den Mechanismus klären, der dahinter steckt: Eine Hemmung des KCNQ1-Kaliumkanals führt zu einer Anhebung des Ruhemembranpotentials in den Froschzellen. Dies wiederum bewirkt, dass bestimmte Gene (Sox10, Slug und Miff) vermehrt abgelesen und die entsprechenden Proteine in größerer Menge produziert werden. Sie wiederum bewirken, dass sich die Zellen öfter teilen und in untypische Regionen einwandern. „Wir vermuten, dass der KCNQ1-Kaliumkanal als ein zellulärer Spannungssensor wirken kann, der bioelektrische Signale aus der Umgebung der Stammzellen in spezifisches Verhalten der Zellen übersetzt“, so Seebohm.

Neue Ansatzpunkte für Therapien

Die Bedeutung bioelektrischer Signale ist noch weitgehend unverstanden. „Das Verständnis der Regulation von embryonalen Stammzellen durch biophysikalische Eigenschaften der Plasmamembran und der Ionenflüsse wird neue Marker und Kontrollpunkte für biomedizinische Eingriffe hervorbringen“, schätzt der Biochemiker. Der neu entdeckte Mechanismus könnte von Bedeutung bei menschlichen Krankheiten wie Metaplasie, Krebs und Neuralleistendefekten sein. Substanzen, die Kaliumkanäle beeinflussen, könnten daher eine neue Bedeutung bei der Behandlung dieser Krankheiten erlangen.

Titelaufnahme

Morokuma, Blackistonj, Adams, Seebohm, Trimmer und Levi: Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. In: PNAS early edition, 13.-17.10.2008

Weitere Informationen

PD Dr. Guisgard Seebohm, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23742, E-Mail: guiscard.seebohm@gmx.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer