Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rostocker „PILs“, wenn das Blut nicht mehr fließt

14.04.2014

Junge Chemikerin forscht an neuartigen Gewebemodellen

Kann man mit „Rostocker Pils“ ein Gefäß nachbilden? „Ja“, sagt die junge Chemikerin Jenny Bandomir von der Universität Rostock mit einem gewissen Lächeln. Die 29-Jährige wird schnell fachlich und klärt auf: „PILs“ steht in diesem Fall für polymerisierte ionische Flüssigkeiten. Diese können vielseitig eingesetzt werden, nicht nur in der Chemie. Stunden, Tage, Monate hat die junge Forscherin im Labor gestanden und Versuche durchgeführt.


Chemikerin Jenny Bandomir hat in aufwändiger Arbeit über 20 ionische Flüssigkeiten hergestellt

(Foto: ITMZ/Thomas Rahr)

Die Universität Rostock hat sich inzwischen zu einer international anerkannten Hochburg für die Forschung über ionische Flüssigkeiten entwickelt. Dabei handelt es sich um organische Salze mit vielfältigen Einsatzmöglichkeiten, z.B. als neuartige Beschichtung für Ballonkatheter, die herzkranken Menschen wieder zur Gesundheit und einem aktiven Leben verhelfen sollen.

Bislang erhalten diese Patienten beispielsweise einen Stent oder das verengte Gefäß wird mit einem Ballonkatheter erweitert. Jenny Bandomir erforscht u.a. mit Dr. Svea Petersen und Sebastian Kaule vom Warnemünder Institut für Biomedizintechnik neuartige Gewebemodelle mit neuartiger Beschichtung von Ballons und sagt stolz: „Wir konnten im Labor über verschiedene Wirkstofffreisetzungen von Ballonkathetern nachweisen, dass diese Beschichtung sowie die eingesetzten Gewebemodelle durchaus Potenzial haben, also mögliche Alternativen bieten“.

Die gebürtige Wismaranerin empfindet viel Freude an ihrer Forschung. „Es klappt zwar nicht immer alles, aber man geht dadurch einen großen Schritt in der eigenen Entwicklung, wenn man Höhen und Tiefen durchlebt und sich immer wieder neu motivieren muss“, sagt sie. Ihr Freund Henrik, ebenfalls Chemiker, hat bereits die Promotion hinter sich und richtet Jenny auf, wenn es mal einen Tiefschlag in ihrer Forschungsarbeit gibt.

Die Zusammenarbeit zwischen Chemikern und Ingenieuren, also unterschiedlicher Fachbereiche im so genannten REMEDIS-Projekt, genau das ist es, was Jenny Bandomir so gefällt. REMEDIS ist ein Forschungsverbund der Universität Rostock mit nationalen und internationalen Forschungs- und Industriepartnern. Gemeinsam arbeiten Wissenschaftler der Naturwissenschaften, Ingenieurwissenschaften und Medizin an der Entwicklung und Verbesserung von Implantaten:

„Es macht mir unheimlich Spaß, im Team die Forschungsentwicklung zur erfolgreichen Anwendung zu führen und fächerübergreifend Impulse zu bekommen“, sagt die junge Wissenschaftlerin. Ihr Doktorvater Professor Udo Kragl ist sehr zufrieden mit der wissenschaftlichen Leistung von Jenny Bandomir. „Sie hat ein neues Feld in der Medizintechnik durch ein neu entwickeltes Material weit mit aufgestoßen, das ein Problem löst“. Am Ende wurde ein Implantatprototyp entwickelt, ein Implantationsort künstlich erzeugt und somit eine Ballondilatation im Labor simuliert.

Die Rostocker Forschung der jungen Wissenschaftlerin – zur Charakterisierung der neuartigen künstlichen Gewebemodelle – sind jetzt in einer internationalen Zeitschrift bereits veröffentlicht. Ein Indiz für einen Ritterschlag. (Text: Wolfgang Thiel)

Kontakt
Universität Rostock
Institut für Chemie
Jenny Bandomir
T: 0381 498 6451
Mail: jenny.bandomir@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics