Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlaser liefert Bauplan für mögliches Mittel gegen Schlafkrankheit

30.11.2012
Mit dem weltstärksten Röntgenlaser haben Forscher eine potenzielle Achillesferse des Erregers der Schlafkrankheit enthüllt.
Die detaillierte Analyse liefert den Bauplan für ein mögliches Mittel gegen den Parasiten Trypanosoma brucei, der mehr als 60 Millionen Menschen vor allem im südlichen Afrika bedroht. Es ist die erste neue biologische Strukturinformation, die mit einem sogenannten Freie-Elektronen-Laser gewonnen wurde.

Mit einem maßgeschneiderten molekularen Stöpsel ließe sich demnach ein lebenswichtiges Enzym des Parasiten blockieren, wie das Team um DESY-Forscher Prof. Henry Chapman vom Center for Free-Electron Laser Science (CFEL), Prof. Christian Betzel von der Universität Hamburg und Dr. Lars Redecke von der gemeinsamen Nachwuchsgruppe "Strukturelle Infektionsbiologie unter Anwendung neuer Strahlungsquellen (SIAS)" der Universitäten Hamburg und Lübeck, im Fachjournal "Science" berichtet. "Dies ist die erste neue biologische Struktur, die an einem Freie-Elektronen-Laser entschlüsselt wurde", betont Chapman.

Kolorierte Elektronenmikroskopaufnahme des Parasiten Trypanosoma brucei (hellblau) im Blut, zusammen mit roten und weißen Blutkörperchen (Erythrozyten, rot, und Lymphozyten, weiß). Die Parasiten werden durch den Biss der Tsetse-Fliege übertragen und leben im Blut, bevor sie das zentrale Nervensystem und das Hirn angreifen, was in der Regel tödlich verläuft.

Bild: Prof. Michael Duszenko, Universität Tübingen


Kombinierte Intensitätskarte aus fast 200 000 Streubildern von in vivo gezüchteten Kristallen des Enzyms Cathepsin B aus dem Erreger der Schlafkrankheit, Trypanosoma brucei. Diese Karte diente dazu, die dreidimensionale molekulare Struktur des Enzyms zu bestimmen.

Bild: Karol Nass, CFEL

Die Wissenschaftler hatten das Enzym Cathepsin B des Parasiten in kristallisierter Form mit den intensiven Röntgenblitzen der Linac Coherent Light Source LCLS am US-Forschungszentrum SLAC in Kalifornien analysiert. "Das Enzym hatte sich in früheren Untersuchungen als vielversprechender Ansatzpunkt für ein Medikament erwiesen", erläutert Dr. Lars Redecke, einer der beiden Hauptautoren der "Science"-Studie. "Das Ausschalten des Enzyms im Parasiten konnte bei Mäusen die Infektion heilen."

Allerdings kommt dasselbe Enzym auch beim Menschen und sogar bei allen Säugetieren vor. Legt man es unspezifisch lahm, kann das auch für den Patienten gravierende Konsequenzen haben. Mit ihrer Röntgenuntersuchung haben die Forscher nun jedoch charakteristische Unterschiede in der molekularen Struktur des Enzyms zwischen Mensch und Parasit gefunden. "Damit eröffnet sich grundsätzlich die Chance, mit einem maßgeschneiderten Molekül gezielt das Enzym des Parasiten zu blockieren, es aber beim Patienten intakt zu lassen", erläutert der andere Hauptautor der "Science"-Studie, Karol Nass, Doktorand an der Hamburg School for Structure and Dynamics in Infection (SDI), die von der Landesexzellenzinitiative (LEXI) gefördert wird. Trotz dieses vielversprechenden Ansatzes sei ein mögliches neues Medikament allerdings noch sehr weit entfernt, betonen die Wissenschaftler.

Die Schlafkrankheit, wissenschaftlich als Humane Afrikanische Trypanosomiasis (HAT) bezeichnet, wird durch den Biss der Tsetse-Fliege übertragen. Die Trypanosomen verschanzen sich im zentralen Nervensystem, und ohne Behandlung verläuft die Infektion normalerweise tödlich. Die Krankheit kommt in 36 afrikanischen Ländern südlich der Sahara vor und gefährdet vor allem die arme Landbevölkerung. In den vergangenen Jahren wurde der Kampf gegen die Krankheit unter Federführung der Weltgesundheitsorganisation WHO deutlich verstärkt, wodurch die Fallzahlen drastisch gesunken sind. Dennoch sind nach wie vor Millionen Menschen gefährdet.

Die Schlafkrankheit wird mit Anti-Parasiten-Medikamenten behandelt, die allerdings ohne genaue Kenntnis der biochemischen Zusammenhänge entwickelt worden und daher weniger zuverlässig und sicher seien als wünschenswert, unterstreichen die Wissenschaftler. Außerdem würden immer mehr Parasiten widerstandsfähig gegen die Mittel. Neue Wirkstoffe, die gezielt die Parasiten töten ohne den Organismus des Patienten zu beeinträchtigen, wären daher von großem Nutzen.

Zur Entschlüsselung der Cathepsin-B-Struktur durchleuchtete das Forscherteam kleine Kristalle aus dem Biomolekül mit der intensiven Röntgenstrahlung. Kristalle streuen Röntgenlicht generell auf charakteristische Weise, und aus den resultierenden Beugungsbildern lässt sich die Struktur des Kristalls und damit in diesem Fall des Enzyms berechnen. Dank der hellen Röntgenblitze konnten die Wissenschaftler die molekulare Struktur des Enzyms mit atomarer Auflösung bestimmen.

Auch wenn diese Art der Röntgenkristallographie von Biomolekülen heute zu den Standardmethoden gehört, gibt es viele Proteine, die im Labor schwer zu kristallisieren sind, wie etwa Cathepsin B. Die Forscher verfolgten daher einen neuartigen Ansatz: Sie ließen Insektenzellen die Enzymkristalle in vivo herstellen. Im Gegensatz zur üblichen Kristallisation, bei der Bakterien das gewünschte Biomolekül herstellen und es nachträglich mit viel Ausschuss im Labor zu möglichst großen Einheiten kristallisiert wird, lieferte nur die In-vivo-Technik, die in den Laboren von Betzel und von Prof. Michael Duszenko an der Universität Tübingen entwickelt wurde, brauchbare Kristalle.

Darüber hinaus hat die In-vivo-Kristallisation in Insektenzellen einen weiteren, entscheidenden Vorteil: Auf diese Weise wurde das Cathepsin B in seiner natürlichen Konfiguration "eingefroren". Das Enzym arbeitet als eine Art molekulare Schere, die andere Proteine zerteilt. Es wird daher im Organismus in einer inaktivierten Form hergestellt, bei der ein kleines Eiweißmolekül, ein sogenanntes Peptid, die Schere blockiert. Erst wenn die Schere gebraucht wird, aktiviert die Zelle das Enzym und löst das Peptid.

"Dank des angekoppelten Peptids konnten wir unter einen bislang unzugänglichen Strukturbereich des Cathepsins schauen", erläutert Betzel. Dort enthüllte die Analyse deutliche Unterschiede der Peptid-Bindungsstellen am Cathepsin B zwischen Parasit und Mensch, die sich für einen maßgeschneiderten künstlichen Hemmstoff nutzen lassen, der gezielt das Parasiten-Enzym blockiert. "Auf diese Weise hat uns die Natur einen grundlegenden Bauplan dafür geliefert, wie ein künstlicher Hemmstoff für das Enzym des Parasiten aussehen könnte." Der nächste Schritt wäre die Herstellung und der Test eines solchen Hemmstoffs im Labor.

Die untersuchten Enzymkristalle waren etwa einen tausendstel Millimeter (einen Mikrometer) dick und im Schnitt zehn Mikrometer lang. Das ist immer noch so klein, dass nur die hellsten Röntgenquellen wie die LCLS ausreichend detaillierte Beugungsbilder für eine Strukturanalyse mit atomarer Auflösung produzieren. Die LCLS gehört zu einer neuen Generation von Forschungslichtquellen. Diese sogenannten Freie-Elektronen-Laser beruhen auf starken Teilchenbeschleunigern, die zunächst Elektronen auf hohe Energien bringen und sie dann durch einen enggesteckten Slalomkurs schicken. In jeder Kurve senden die Elektronen kleine Röntgenblitze aus, die sich zu einem extrem starken Laserpuls verstärken, der dann winzige Strukturen wie Enzyme und andere Biomoleküle entschlüsseln kann. In Hamburg entsteht mit dem Freie-Elektronen-Laser European XFEL, bei dem DESY Hauptgesellschafter ist, zurzeit der beste Röntgenlaser der Welt.

Um die Struktur der Peptid-Bindestelle am Cathepsin B zu bestimmen, mussten die Forscher Hunderttausende Beugungsbilder aufnehmen und nachträglich zusammenfügen, wobei jedes Bild immer nur einen Teil der Struktur liefert. Da die Kristalle durch den Beschuss mit den Röntgenblitzen sofort verdampfen, ließen die Forscher Millionen von Kristallen in einem feinen Wasserstrahl durch den Strahl des Röntgenlasers rieseln. Der Röntgenlaser feuerte 120 Blitze pro Sekunde auf den Strahl, im Schnitt traf jeder elfte einen Kristall. So entstanden insgesamt 293 195 Beugungsbilder, die nur mit einem großen Parallelrechner verarbeitet werden konnten. Die Kombination ergibt zunächst eine dreidimensionale Karte der kompletten Streueigenschaften des Enzyms, aus der sich seine Struktur bis auf 2,1 Ångström genau berechnen ließ (ein Ångström ist ein zehntel Nanometer, das entspricht einem zehnmillionstel Millimeter). "Interessanterweise fällt unsere Entdeckung gerade mit dem hundertsten Jubiläum der Veröffentlichung der berühmten Röntgenbeugungsgleichung durch William Bragg im Jahr 1912 zusammen", betont Chapman.

Dem Forscherteam gehörten Wissenschaftler von DESY, den Universitäten Hamburg, Lübeck, Tübingen, Uppsala und Göteborg sowie der Arizona State University, dem US-Beschleunigerzentrum SLAC, dem Lawrence Livermore National Laboratory (USA), dem Max-Planck-Institut für medizinische Forschung in Heidelberg und der Max Planck Advanced Study Group am Hamburger Center for Free-Electron Laser Science (CFEL) an. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg. DESY ist ein Forschungszentrum der Helmholtz-Gemeinschaft. Es ist das führende deutsche Beschleunigerzentrum und eines der führenden in der Welt.

Originalveröffentlichung: "Natively inhibited Trypanosoma brucei cathepsin B structure determined using an x-ray laser"; Lars Redecke, Karol Nass et al.; "Science", 2012 (advance online publication); DOI: 10.1126/science.1229663

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de
http://www.desy.de/infos__services/presse/pressemeldungen/2012/pm_291112/index_ger.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics