Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RNA-Transport in Neuronen - Staufen2 erkennt seine Ziel-Transkripte auf komplexe Weise

15.04.2019

Ein Wissenschaftlerteam des Helmholtz Zentrums München und der Universität Ulm hat entdeckt, dass der neuronale Transportfaktor Staufen2 auf viel komplexere Art als bisher bekannt seine Zieltranskripte abtastet und an sie bindet. Der RNA-Transport erfolgt in sehr komplexen Protein-RNA-Partikeln, deren Aufbau und Spezifität noch schlecht verstanden werden. Mit den jetzt im Journal Nature Communications veröffentlichten Erkenntnissen sind neue Ansätze zum besseren Verständnis möglich.

Staufen2 ist ein neuronales RNA-Bindeprotein, das während der Neurogenese eine wichtige Rolle bei der Differenzierung von neuralen Vorläuferzellen spielt. Hinzu kommt, dass es ein zentraler Faktor für den RNA-Transport zu Synapsen und damit wichtig für die synaptische Plastizität, die Grundlage von Gedächtnis und Erinnerungsbildung ist.


Das Wissenschaftsteam um Prof. Dr. Dierk Niessing, Arbeitsgruppenleiter am Institut für Strukturbiologie (STB) am Helmholtz Zentrum München sowie Professor und Leiter des Instituts für Pharmazeutische Biotechnologie an der Universität Ulm, konnte zeigen, dass die RNA-bindenden Domänen (dsRBDs) 1 und 2 des mStau2-Proteins mit gleicher Affinität und Kinetik an mRNA bindet, wie die Domänen 3-4.

Von Letzteren nahm man bisher an, dass sie allein für eine mRNA-Bindung ausreichend wären. Während die Bindung dieser sogenannten Tandem-Domänen eher flüchtig ist, erkennen alle vier RNA-Bindedomänen ihre Ziel-RNA mit hoher Stabilität.

Bisherige Studien legten nahe, dass nur zwei RNA-Bindedomänen in Staufen2, nämlich dsRBD 3 und 4, für die Bindung zuständig sind. Trotzdem gelang es bis jetzt nicht, die für den RNA-Transport notwendige stabile Bindung im Reagenzglas nachzustellen. „Dieses Problem ist nun gelöst“, sagt Niessing, „denn nun ist klar, dass dsRBDs 1 und 2 ebenfalls für eine stabile Bindung notwendig sind. Mit Hilfe verschiedener strukturbiologischer und biophysikalischen Techniken konnten wir das Verhalten von dsRBD 1 und 2 aufzeigen“.

„Hier wurde ersichtlich, dass Staufen2 seine Ziel-RNAs auf viel komplexere Art als bisher angenommen erkennt“, fügt Dr. Simone Heber, Erstautorin des Artikels und Postdoc am STB, hinzu. „Staufen2 tastet seine Transskripte nämlich insgesamt mit vier RNA-Bindedomänen ab und bindet daran“.

Die Studie erfolgte in enger Zusammenarbeit mit Prof. Michael Sattler, Direktor des STB und Leiter des NMR-Zentrums des Helmholtz Zentrums München und der Technischen Universität München sowie mit Dr. Anne Ephrussi, Head of Unit „Developmental Biology“ am EMBL Heidelberg.

Das Staufen2-Protein ist wichtig für die Bildung unserer Erinnerung und unseres Gedächtnisses. Dieser Vorgang ist bis heute nicht gut verstanden. In einer alternden Gesellschaft ist die Forschung zu diesem Thema von zentralem Interesse, da sie hilft, die molekularen Grundlagen und Prinzipien von Lernen und Erinnerung besser zu verstehen.

Das Projekt findet im Rahmen der DFG-geförderten Forschungsgruppe FOR2333 statt. Die erfolgreiche Finanzierung der Forschungsgruppe in der zweiten Förderperiode ist im März 2019 verkündet worden. Das Wissen über die Funktion von Staufen2 trägt erheblich zum allgemeinen Verständnis von RNA-Transport in höheren Organismen bei. Eine Funktion, die auch für die Stammzellforschung von großem Interesse ist. So kollaboriert das Wissenschaftsteam um Niessing auch mit Kolleginnen und Kollegen des Instituts für Stammzellforschung (ISF).

Weitere Informationen:

Originalpublikation: Simone Heber et al. (2019): Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nature communications: DOI 10.1038/s41467-019-09655-3 https://www.nature.com/articles/s41467-019-09655-3

Verwandte Artikel:

17.12.2018 Care-for-Rare Science Award für Dierk Niessing: https://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/arti...

17.01.2017 Blick ins zelluläre Transportsystem: https://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/arti...

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus, Allergien und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 19 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. https://www.helmholtz-muenchen.de/

Das Institut für Strukturbiologie (STB) erforscht die Raumstruktur biologischer Makromoleküle, analysiert deren Struktur und Dynamik und entwickelt NMR-spektroskopie Methoden für diese Untersuchungen. Ziel ist es, molekulare Mechanismen der biologischen Aktivität dieser Moleküle und ihre Beteiligung an Krankheiten aufzuklären. Die Strukturdaten werden als Grundlage für die rationale Entwicklung kleiner Molekülinhibitoren in Verbindung mit Ansätzen der chemischen Biologie angewandt. https://www.helmholtz-muenchen.de/stb/index.html

Das Institut für Stammzellforschung (ISF) untersucht die grundlegenden molekularen und zellulären Mechanismen der Stammzellerhaltung und -differenzierung. Daraus entwickelt das ISF Ansätze, um defekte Zelltypen zu ersetzen, entweder durch Aktivierung ruhender Stammzellen oder Neuprogrammierung anderer vorhandener Zelltypen zur Reparatur. Ziel dieser Ansätze ist die Neubildung von verletztem, krankhaft verändertem oder zugrunde gegangenem Gewebe. https://www.helmholtz-muenchen.de/isf/index.html

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187-2238, E-Mail: presse@helmholtz-muenchen.de

Wissenschaftlicher Ansprechpartner:
Prof. Dr. Dierk Niessing, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Strukturbiologie, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 2176, E-Mail: niessing@helmholtz-muenchen.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dierk Niessing
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Institut für Strukturbiologie
Ingolstädter Landstraße 1
85764 Neuherberg
Tel. +49 89 3187 2176
E-Mail: niessing@helmholtz-muenchen.de

Originalpublikation:

Simone Heber et al. (2019): Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nature communications: DOI 10.1038/s41467-019-09655-3 https://www.nature.com/articles/s41467-019-09655-3

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Berichte zu: Helmholtz ISF Neuronen Stammzellforschung Staufen2 Strukturbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Das Rezept für eine Fruchtfliege

18.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics