Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RNA-Moleküle haben ein kurzes Leben

13.07.2017

Eine Forschungsgruppe am Biozentrum der Universität Basel hat eine neue Methode entwickelt, um die Halbwertszeit von RNA-Molekülen zu messen. Dabei zeigte sich, dass gängige Methoden verzerrte Messergebnisse liefern und RNA-Moleküle durchschnittlich nur zwei Minuten leben, zehnmal kürzer als bislang angenommen. Die Ergebnisse sind jetzt im Fachjournal «Science Advances» veröffentlicht.

RNA-Moleküle sind einzelne Abschriften der DNA einer Zelle. Sie übertragen die genetischen Informationen der DNA und dienen als Vorlage für die Herstellung von Proteinen, die sämtliche Prozesse in der Zelle steuern.


RNA-Moleküle leben durchschnittlich zwei Minuten bevor sie von einem Exosom eliminiert werden

Universität Basel, Biozentrum

Reguliert werden diese kleinen Informationsüberträger über ihre Lebenszeit, besser gesagt Halbwertszeit. Nach ihrer Herstellung dienen RNA-Moleküle für eine begrenzte Zeit als Vorlage für die Proteinproduktion, bevor sie wieder abgebaut werden.

Bislang gab es zwei wissenschaftliche Methoden, mit denen man die Halbwertszeit der RNAs gemessen hat. Wie das Forschungsteam von Prof. Attila Becskei am Biozentrum, Universität Basel, nun herausfand, können diese herkömmlichen Methoden ziemlich ungenau sein und teilweise inkonsistente Ergebnisse liefern.

Becskeis Team hat nun eine neue Methode gefunden, mit der er zeigen konnte, dass RNA-Moleküle im Schnitt nicht 20 Minuten überdauern, sondern lediglich zwei Minuten leben. «Das war eine herausfordernde Aufgabe für uns, denn niemand wusste im Voraus, welche Methode die richtigen Ergebnisse liefern würde», sagt Becskei.

Die «Gene Control Methode» zeigt: RNAs leben kurz

Die Halbwertszeit einer RNA ist für wissenschaftliche Untersuchungen zum Zellzyklus relevant. Der gesamte Prozess der Zellteilung ist darauf angewiesen, dass die richtige Menge an Proteinen zum richtigen Zeitpunkt vorliegen. Stimmen die Konzentrationen in gewissen Phasen des Zellzyklus nicht, kommt es zu Fehlern.

Die von Becskei verwendete Genkontrollmethode ist bereits bekannt, wird bislang jedoch nicht zur Messung der Halbwertszeit von RNA-Molekülen eingesetzt. Grund dafür ist, dass komplexe Gentechniken dafür notwendig sind und sie langwierig ist, da sich mit ihr lediglich nur eine RNA zur selben Zeit untersuchen lässt.

Dabei reguliert man ein einzelnes Gen auf der DNA so, dass die Herstellung der RNA an- und abgeschaltet werden kann. Unterbindet man die RNA-Produktion, lässt sich messen, wie lange die bereits produzierten RNAs in der Zelle überdauern. So lässt sich die Lebenszeit für dieses RNA-Molekül ermitteln. „Die Methode liefert also immer nur das Ergebnis für eine RNA, dafür ist das Ergebnis verlässlich“, so Becskei.

Die Versuche wurden für rund 50 verschiedene Gene wiederholt und zeigten, dass 80 Prozent aller RNAs eine kurze Lebensdauer haben und weniger als 2 Minuten leben. Nur rund 20 Prozent leben länger, etwa 5 bis 10 Minuten. «Diese Ergebnisse sind erstaunlich, wenn man bedenkt, dass man bislang davon ausging, dass RNAs durchschnittlich 20 Minuten in der Zelle überdauern», so Becskei.

Herkömmliche Methoden mit Haken

Bislang gab es im Wesentlichen zwei Hauptmethoden, derer sich Wissenschaftler bedienten, um die Halbwertszeit von RNA-Molekülen zu messen. Bei der transkriptionellen Inhibition wird der Zelle eine Substanz verabreicht, die die Herstellung der RNAs durch alle Gene stoppt. «Unterbindet man jedoch die Produktion aller RNAs, so ändern sich auch andere Prozesse in der Zelle und sie stellt ihre Funktion ein. Das verfälscht die Ergebnisse“, so Becskei.

Auch die In Vivo Markierung hat ihre Schattenseite: Hier werden die RNAs zunächst markiert und beobachtet, wie lange diese in der Zelle überdauern. Doch das Markieren mit modifizierten Molekülen kann die Funktion der Zelle stören und zu falschen Ergebnissen führen. Somit haben alle bisher verwendeten Methoden einen Nachteil, da die Messung selbst die zu messenden Prozesse beeinflusst. „Manchmal ist kaum zu glauben, dass Wissenschaftler rund 30 Jahre unwissentlich mit Methoden arbeiten, die verzerrte Ergebnisse liefern“, so Becskei. "Es scheint, dass der Philosoph und Wissenschaftstheoretiker Paul Feyerabend richtiglag: Wissenschaft ist oft ziemlich anarchistisch."

Die höchste Korrelation stellte das Forscherteam zwischen Becskeis Methode und einer Variante der «In-vivo Labelling» Methode fest. In den meisten Fällen klassifizierten beide Massnahmen dieselben RNAs als stabil und instabil, auch wenn sich die mittleren Halbwertszeiten unterscheiden. Nun möchte das Team untersuchen, in welchen Bereichen letztere die richtigen Ergebnisse liefert und sich verlässlich einsetzen lässt.

Originalartikel

Antoine Baudrimont, Sylvia Voegeli, Eduardo Calero Viloria,Fabian Stritt, Marine Lenon, Takeo Wada, Vincent Jaquet, Attila Becskei
Multiplexed gene control reveals rapid mRNA turnover.
Advanced Science, published online July 12, 2017.

Weitere Auskünfte

Attila Becskei, Universität Basel, Biozentrum, Tel. +41 61 207 22 22, E-Mail: attila.becskei@unibas.ch

Heike Sacher, Biozentrum, Kommunikation, Tel. +41 61 207 14 49, E-Mail:
heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/RNA-Molekuele-haben-ein-kurze...

Heike Sacher | Universität Basel

Weitere Berichte zu: RNA RNA-Moleküle RNA-Molekülen RNAs Zelle Zellzyklus dna gene control

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics