Ringöffnung unter der Lupe

Mit dem Lichtschalter können wir Licht an- und ausschalten. Licht kann aber umgekehrt selbst als Schalter wirken, etwa, wenn Moleküle unter Bestrahlung ihre Struktur verändern. Photoschaltbare Moleküle sind beispielsweise interessant für holographische Datenspeicher, als molekulare Schalter für Nanomaschinen oder in den Biowissenschaften zum Schalten biologischer Funktionen.

Um solche Moleküle für den jeweiligen Anwendungszweck maßzuschneidern, ist eine umfassende Kenntnis der zugrundeliegenden Reaktionsmechanismen wichtig. Ein Team um Nobelpreisträger Ahmed Zewail und seine Gruppe am California Institute of Technology (Pasadena, USA) berichtet jetzt in der Zeitschrift Angewandte Chemie, wie sie mit Elektronenbeugungsstudien einem lichtschaltbaren Molekül bei „Umschalten“ über die Schulter gesehen haben.

Das untersuchte Molekül ist ein komplexes Ringsystem, das sich durch UV-Licht zwischen einer geschlossenen und einer offenen Form umschalten lässt. In der geschlossenen Spiropyran-Form besteht es aus zwei planaren fusionierten Ringsystemen, die zwei senkrecht zueinander stehende Ebenen bilden. Unter Bestrahlung wird eine Bindung gespalten, dadurch öffnet sich ein einzelner Ring. In dieser offenen Merocyanin-Form sind die beiden Einheiten des Moleküls nur noch über eine Brücke aus drei Bindungen verknüpft. Jede dieser Bindungen kann im Prinzip auf zwei verschiedene Weisen räumlich angeordnet sein, die als cis und trans bezeichnet werden. Das untersuchte Molekül enthält zudem eine Nitrogruppe (-NO2), damit kann es bei einer Lichtanregung zusätzlich in zwei unterschiedlichen elektronischen Zuständen – Singulett und Triplett – vorliegen.

Aber für welche entscheidet es sich? Das wollten die Forscher herausfinden und so den Reaktionsmechanismus untersuchen. Sie verwendeten dazu die Methode der Laserdesorptions-Elektronenbeugung. Die Probe wird dabei so schnell mit einem Laser erhitzt und verdampft, dass die Probenmoleküle keine Zeit haben, zu zerfallen. Die isolierten Moleküle werden dann mit Elektronen bestrahlt. Die Elektronen werden von den Atomkernen des Moleküls abgelenkt und es entsteht ein charakteristisches Beugungsmuster. Die Wissenschaftler zeichneten Beugungsmuster 100 Nanosekunden vor und nach der UV-Anregung auf.

Mit theoretischen Modellrechnungen konnten die Forscher diese Beugungsmuster auswerten. Die Quintessenz: „Bei der Ringöffnung entsteht vornehmlich die cis-trans-cis-Struktur“, so Zewail, „während konkurrierende strahlungslose Pfade zu anderen Strukturen führen, nämlich den geschlossenen Formen in ihren Triplett- und Singulett-Grundzuständen.“

„Unsere Ergebnisse demonstrieren die enorme Leistungsfähigkeit der Methode der Elektronenbeugung, eine solch komplexe nanometer-skalierte Struktur mit nur geringer Symmetrie zu lösen“, sagt Zewail.

Angewandte Chemie: Presseinfo 31/2010

Autor: Ahmed H. Zewail, California Institute of Technology, Pasadena (USA), http://www.zewail.caltech.edu/contact/index.html

Angewandte Chemie 2010, 122, No. 37, 6674–6677, Permalink to the article: http://dx.doi.org/10.1002/ange.201003583

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer