Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenschritt in Miniwelt: UZH-Forscherin misst elektrische Ladung von Nano-Partikeln

30.07.2012
Ein Millionstel Millimeter klein sind Nano-Teilchen, für das menschliche Auge lange nicht mehr sichtbar. Es sei denn, sie liegen unter dem Mikroskop von Prof. Madhavi Krishnan, Biophysikerin an der Universität Zürich.
Die Wissenschaftlerin hat eine neue Methode entwickelt, mit der sie nicht nur messen kann, wie gross die Partikel sind, sondern welche elektrostatische Ladung sie haben. Bisher war es nicht möglich, die Ladung der Teilchen direkt zu bestimmen. Diese bislang weltweit einmalige Methode ist bei der Herstellung von Arzneien genauso relevant wie für die Grundlagenforschung.

Um die einzelnen Teilchen einer Lösung beobachten zu können, locken Prof. Madhavi Krishnan und ihre Mitarbeiter jedes von ihnen in eine «elektrostatische Falle». Das funktioniert so: Die Forscher erzeugen zwischen zwei winzigen Glasplatten, die Chip-Grösse haben, tausende von runden Energielöchern. Der Trick ist, dass diese Löcher nur schwach elektrostatisch geladen sind. Geben die Wissenschaftler nun einen Tropfen Lösung auf die Plättchen, fällt jedes Teilchen in ein Energieloch und bleibt dort gefangen. Doch es ruht nicht still in seiner Falle, sondern wird ständig von den Molekülen in der Lösung angestupst. Dadurch bewegt es sich kreisförmig. «Diese Bewegungen messen wir und können daran die Ladung jedes einzelnen Teilchens bestimmen», erklärt Prof. Madhavi Krishnan.

Querschnitt durch zwei Glasplatten in Chip-Grösse, in dem ein Nano-Partikelchen in einem Energieloch, in der Fachsprache Potentialtopf, gefangen ist. Die farbigen Felder zeigen die unterschiedlichen Ladungen im elektrostatischen Feld. Dabei ist der rote Bereich sehr niedrig, der blaue Rand hingegen stark geladen.
Bild: UZH

Denn einfach gesagt, ziehen die Partikel mit einer nur geringen Ladung in ihren Fallen grosse Kreise, diejenigen mit einer hohen Ladung nur kleine. So wie einen leichter Ball weit fliegt, ein schwerer hingegen nicht. Ähnlich bestimmte US-Physiker Robert A. Millikan vor 100 Jahren in seinem Öltropf-Experiment, wie schnell sich elektrisch geladene Öltropfen bewegen. 1923 erhielt er den Nobelpreis für Physik. «Doch er untersuchte die Tropfen in einem Vakuum», erläutert die Biophysikerin. «Wir dagegen untersuchen Nano-Teilchen in einer Lösung, die selbst die Eigenschaften der Partikel beeinflusst.»

Elektrostatische Ladung von Nano-Arzneipaketen

Für alle Lösungen, die in der Industrie hergestellt werden, ist die elektrische Ladung der enthaltenen Nano-Partikel ebenfalls entscheidend, denn erst sie ermöglicht, dass eine flüssige Lösung so bleibt wie sie ist und nicht verklumpt. «Mit unserer neuen Methode erhalten wir ein Bild der ganzen Suspension mit allen darin enthaltenen Teilchen», betont Prof. Madhavi Krishnan. Eine Suspension ist eine Flüssigkeit, in der sich kleinste Partikel oder Tröpfchen fein verteilen, wie zum Beispiel in Milch, Blut, vielen Farben, Kosmetika, Impfstoffen und unzählige Arzneien. «Die Ladung der Teilchen spielt darin eine grosse Rolle», sagt die Zürcher Wissenschaftlerin.

Ein Beispiel ist die Herstellung von Medikamenten, die über «Drug-Delivery-Systeme» über einen längeren Zeitraum hinweg gezielt und genau dosiert verabreicht werden sollen. Dabei fungieren Nano-Partikel als «Pakete», die die Arzneien dorthin bringen, wo sie wirken sollen. Entscheidend aber, dass sie Gewebe und Zellmembranen im Körper ungehindert passieren und damit überhaupt erst wirken können, ist sehr oft ihre elektrostatische Ladung. «Deswegen ist es so wichtig, ihre Ladung messen zu können. Bislang wurden meist nur ungenaue Resultate erzeugt,» so die Forscherin.

«Mit der neuen Methode können wir sogar in Echtzeit messen, wenn ein einzelnes Teilchen seine Ladung ändert», ergänzt Prof. Madhavi Krishnan. «Das ist besonders für die Grundlagenforschung spannend und noch nie zuvor möglich gewesen.» Denn Ladungsänderungen spielen bei allen Reaktionen im Körper eine Rolle, sei es von Proteinen, grossen Molekülen wie die DNA-Doppelhelix, in der die Erbanlagen codiert sind, oder den Zellorganellen. «Wir untersuchen, wie die Materie im Millionstel Millimeterbereich funktioniert.»

Literatur:
Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale
objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html, doi:10.1038/nnano.2012.99

Kontakt:
Prof. Dr. Madhavi Krishnan
Universität Zürich
Physikalisch-chemisches Institut
Phone: +41 44 635 44 65
e-mail: madhavi.krishnan@ uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Wirkstoff aus dem Regenwald
14.11.2018 | Julius-Maximilians-Universität Würzburg

nachricht Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung
14.11.2018 | Jacobs University Bremen gGmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Eine kalte Supererde in unserer Nachbarschaft

15.11.2018 | Physik Astronomie

Automatisierte Klebfilmablage und Stringerintegration für den Flugzeugbau

14.11.2018 | Materialwissenschaften

Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten

14.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics