Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulation von Botenstoffen der Entzündung

01.06.2016

Kieler Team des Exzellenzclusters Entzündungsforschung deckt grundlegend neuen Mechanismus auf

Tumornekrosefaktor-alpha (TNF-α) ist ein zentraler Signalstoff des Immunsystems und an vielen Entzündungsprozessen beteiligt. Die Blockade dieses Moleküls ist Grundlage moderner Therapeutika gegen Entzündungskrankheiten wie Rheuma, Schuppenflechte oder chronisch-entzündliche Darmerkrankungen. Welcher molekulare Mechanismus der Freisetzung und damit Aktivierung von TNF-α zugrunde liegt, hat jetzt erstmals eine Arbeitsgruppe des Exzellenzclusters Entzündungsforschung an der Medizinischen Fakultät der Christian-Albrechts-Universität zu Kiel (CAU) aufgeklärt.


Extrazelluläre Signale führen dazu, dass das negativ geladene Phospholipid Phosphatidylserin (PS) von der Innenseite der Membran nach außen kommt. Die Protease ADAM17 kann in diesem Moment mit PS elektrostatisch interagieren und wird so in die Lage versetzt, Substrate (z.B. TNF-α) freizusetzen. Durch Freisetzung von TNF α werden Entzündungsreaktionen in unserem Körper entscheidend beeinflusst. Grafik: Dr. Anselm Sommer


Prof. Dr. Karina Reiß (hinten) und Dr. Anselm Sommer, Exzellenzcluster Entzündungsforschung und Klinik für Dermatologie, Venerologie und Allergologie UKSH Kiel, erforschen Enzyme (Proteasen) und deren Hemmstoffe, die von Bedeutung für Entzündungskrankheiten sind. Foto: Kerstin Nees

Dem Team unter Leitung der Zellbiologin Professorin Karina Reiß ist damit eine Pionierleistung gelungen. Denn das entdeckte Prinzip ist von grundlegender Bedeutung und eröffnet ein komplett neues Forschungsfeld in der Zellbiologie. Abgesehen davon liefert die kürzlich in Nature Communications publizierte Studie neue Ansatzpunkte für die Entwicklung antientzündlicher Therapien.

Seit die zentrale Rolle von Tumornekrosefaktor-alpha (TNF-α) im Entzündungsgeschehen bekannt ist, versuchen Arbeitsgruppen auf der ganzen Welt zu verstehen, wie dieses wichtige Molekül im Körper reguliert wird. Ein Meilenstein in diesem Zusammenhang war eine Entdeckung aus dem Jahr 1997. Damals wurde das Enzym entdeckt, das TNF-αfreisetzt. Das Enzym namens ADAM17 sitzt auf der Zelloberfläche und „schneidet“ dort TNF-α von der in der Membran verankerten Vorstufe ab, so dass es an anderen Zellen seine Wirkung entfalten kann. Neben TNF-α spaltet ADAM17 auch viele andere in der Membran sitzenden Moleküle und überführt diese dadurch in eine lösliche Form.

„Die Protease schneidet Substrate direkt über der Zellmembran ab. Dann können diese nun freigesetzten Proteine an Rezeptoren auf anderen Zellen binden. So wird durch die Protease ADAM17 unglaublich viel in unserem Körper reguliert“, erklärt Karina Reiß, die seit 2008 als Professorin für epitheliale Proteaseinhibitoren im Exzellenzcluster Entzündungsforschung an der Klinik für Dermatologie, Venerologie und Allergologie, Medizinische Fakultät der CAU und Universitätsklinikum Schleswig-Holstein (UKSH), forscht. Es wurden bereits sehr viele Substrate identifiziert, die ADAM17 spaltet. Diese spielen zum Beispiel bei der Zellproliferation, also dem Wachstum von Gewebe, und bei der Immunreaktion eine Rolle.

Seit der Entdeckung von ADAM17 als TNF- α freisetzendes Enzym erhofft man sich von der weiteren Charakterisierung dieser Protease Fortschritte für die Therapie zum Beispiel von Menschen mit chronischen Entzündungen des Darms (Morbus Crohn, Colitis ulcerosa), der Haut (Psoriasis) oder der Gelenke (rheumatoide Arthritis). Grundlegende Fragen sind: Wann fängt dieses Enzym an, etwas von der Zelloberfläche abzuschneiden, und wie funktioniert das im Detail? Durch welche Substanzen die Protease aktiviert wird, also wann sie anfängt, etwas abzuschneiden, ist mittlerweile erforscht. „Aber wie das auf molekularer Ebene funktioniert, hat noch keiner verstanden. Hier haben wir einen wichtigen Beitrag geleistet. Wir können zum ersten Mal den Mechanismus beschreiben, wie ADAM17 aktiviert wird, und tragen damit wesentlich zum Verständnis der Regulation dieses wichtigen Enzyms bei“, erklärt Reiß.

Eine Schlüsselrolle in dem Prozess hat ein Bestandteil der Zellmembran, das Lipidmolekül Phosphatidylserin, kurz PS. Die überwiegend aus Phospholipiden bestehende Zellmembran ist asymmetrisch aufgebaut. Bestimmte Lipide befinden sich nur innen und andere nur außen in der Doppelschicht der Membran. Das negativ geladene Lipidmolekül PS sitzt auf der Innenseite der Membran. Dort können positiv geladene Proteine durch elektrostatische Anziehung andocken, wodurch deren Funktion reguliert wird.

„Wir haben beobachtet, dass das negativ geladene Phosphatidylserin unter bestimmten Umständen kurzfristig nach außen kommt, also quasi umklappt. Dadurch entsteht außen eine negative Ladung. ADAM17 hat positive Ladungen, die mit dieser negativen Ladung interagieren. Das ist der entscheidende Mechanismus, der die Protease aktiviert, damit sie etwas abschneidet“, erklärt Dr. Anselm Sommer, Postdoktorand der Arbeitsgruppe und Erstautor der Studie. Für intrazelluläre Proteine sei bekannt, dass deren Funktion über elektrostatische Anziehung an PS reguliert wird, nicht jedoch für Proteine auf der Außenseite der Zelle. Reiß weiter: „Insofern ist das ein neues, grundlegendes Prinzip in der Zellbiologie, das wir da entdeckt haben.“ Denn es sei gut möglich, dass nicht nur die Protease ADAM17, sondern auch andere Proteine durch dieses nach außen Drehen von PS in ihrer Funktion beeinflusst werden.

Nachgewiesen haben die Forschenden den Mechanismus in Zellkulturstudien mit Substanzen, von denen bekannt ist, dass sie ADAM17 aktivieren. „Wir haben viele bekannte Aktivatoren von ADAM17 auf die Zellen gegeben und konnten im Mikroskop mit Hilfe eines PS-bindenden Farbstoffs beobachten, dass sich PS dabei von innen nach außen bewegt.“ Außerdem wurde der Bereich des ADAM17-Moleküls identifiziert, der mit den negativen Ladungen von PS interagiert. In einem nächsten Schritt sind Studien im Mausmodell geplant, die das neu entdeckte Prinzip auch im lebenden Organismus nachweisen sollen. Ermöglicht und gefördert wurde diese Studie mit Mitteln des Exzellenzclusters Entzündungsforschung, des SFB 877 „Proteolyse als regulatorisches Element in der Pathophysiologie“ und des Graduiertenkolleg 1743 „Gene, Umwelt und Entzündung“.

Originalpublikation:
Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7:11523 doi: 10.1038/ncomms11523 (2016), published 10. 2016.

http://inflammation-at-interfaces.de/de/newsroom/karinareissundanselmsommer.jpg
Prof. Dr. Karina Reiß (hinten) und Dr. Anselm Sommer, Exzellenzcluster Entzündungsforschung und Klinik für Dermatologie, Venerologie und Allergologie UKSH Kiel, erforschen Enzyme (Proteasen) und deren Hemmstoffe, die von Bedeutung für Entzündungskrankheiten sind. Foto: Kerstin Nees

http://inflammation-at-interfaces.de/de/newsroom/A17SchemaV2.jpg
Extrazelluläre Signale führen dazu, dass das negativ geladene Phospholipid Phosphatidylserin (PS) von der Innenseite der Membran nach außen kommt. Die Protease ADAM17 kann in diesem Moment mit PS elektrostatisch interagieren und wird so in die Lage versetzt, Substrate (z.B. TNF-α) freizusetzen. Durch Freisetzung von TNF α werden Entzündungsreaktionen in unserem Körper entscheidend beeinflusst. Grafik: Dr. Anselm Sommer

Kontakt:
Prof. Dr. Karina Reiß
Klinik für Dermatologie, Venerologie und Allergologie
Tel.: 0431/597-4786
kreiss@dermatology.uni-kiel.de

Dr. Anselm Sommer
Klinik für Dermatologie, Venerologie und Allergologie
Tel.: 0431/597-1062
asommer@dermatology.uni-kiel.de

Exzellenzcluster Entzündungsforschung
Wissenschaftliche Geschäftsstelle, Leitung: Dr. habil. Susanne Holstein
Presse und Kommunikation, Sonja Petermann, Text: Kerstin Nees
Postanschrift: Christian-Albrechts-Platz 4, D-24118 Kiel
Telefon: (0431) 880-4850, Telefax: (0431) 880-4894
E-Mail: spetermann@uv.uni-kiel.de
Internet: www.inflammation-at-interfaces.de

Der Exzellenzcluster „Inflammation at Interfaces/Entzündungsforschung“ wird seit 2007 durch die Exzellenzinitiative des Bundes und der Länder mit einem Gesamtbudget von 68 Millionen Euro gefördert; derzeit befindet er sich in der zweiten Förderphase. Die rund 300 Clustermitglieder an den insgesamt vier Standorten: Kiel (Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein), Lübeck (Universität zu Lübeck, UKSH), Plön (Max-Planck-Institut für Evolutionsbiologie) und Borstel (Forschungszentrum Borstel – Leibniz-Zentrum für Medizin und Biowissenschaften) forschen in einem innovativen, systemischen Ansatz an dem Phänomen Entzündung, das alle Barriereorgane wie Darm, Lunge und Haut befallen kann.

Weitere Informationen:

http://inflammation-at-interfaces.de/de/newsroom/aktuelles/regulation-von-botens...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemische Reaktionen per Licht antreiben
25.04.2019 | Johannes Gutenberg-Universität Mainz

nachricht Kraftwerk ohne DNA
25.04.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Volle Fahrt voraus für SmartEEs auf der Automotive Interiors Expo 2019

Flexible, organische und gedruckte Elektronik erobert den Alltag. Die Wachstumsprognosen verheißen wachsende Märkte und Chancen für die Industrie. In Europa beschäftigen sich Top-Einrichtungen und Unternehmen mit der Forschung und Weiterentwicklung dieser Technologien für die Märkte und Anwendungen von Morgen. Der Zugang seitens der KMUs ist dennoch schwer. Das europäische Projekt SmartEEs - Smart Emerging Electronics Servicing arbeitet an der Etablierung eines europäischen Innovationsnetzwerks, das sowohl den Zugang zu Kompetenzen als auch die Unterstützung der Unternehmen bei der Übernahme von Innovationen und das Voranschreiten bis zur Kommerzialisierung unterstützt.

Sie umgibt uns und begleitet uns fast unbewusst durch den Alltag – gedruckte Elektronik. Sie beginnt bei smarten Labels oder RFID-Tags in der Kleidung,...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie sieht das Essen der Zukunft aus?

25.04.2019 | Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

UKP-Laser erobern Makrobearbeitung

25.04.2019 | Verfahrenstechnologie

Kraftwerk ohne DNA

25.04.2019 | Biowissenschaften Chemie

Chemische Reaktionen per Licht antreiben

25.04.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics