Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulation eines embryonalen kleinen Hitzeschock-Proteins aufgeklärt

11.06.2015

Kleine Hitzeschock-Proteine sorgen dafür, dass andere Proteine bei Stress nicht verklumpen und ermöglichen der Zelle zu überleben. Defekte dieser „kleinen Helfer“ werden mit Krankheiten wie grauem Star oder Krebs in Verbindung gebracht. Nun haben Wissenschaftler der Technischen Universität München (TUM) ein kleines Hitzeschock-Protein beim Fadenwurm Caenorhabditis elegans charakterisiert, das speziell für dessen Embryonalentwicklung zuständig ist. Vermutlich gibt es ein ähnliches Protein auch im Menschen.

Auch Zellen kennen Katastrophen. Zwar werden sie nicht von Hurrikans heimgesucht oder von Erdbeben erschüttert, doch die Zerstörung, die etwa Hitze oder Strahlung anrichten können, ist ähnlich verheerend: Wichtige Proteine, die beispielsweise chemische Reaktionen steuern, Stoffe transportieren oder Signalstoffe erkennen, verlieren ihre Struktur und werden so unbrauchbar. Die Prozesse in der Zelle laufen dann aus dem Ruder.


Struktur des kleinen Hitzeschock-Proteins Sip1 (Röntgenstrukturanalyse; Draufsicht)

Tilly Fleckenstein / TUM

Doch auch die Zelle hat Katastrophenhelfer. Kleine Hitzeschock-Proteine verhindern, dass die anderen Proteine zu einem wirren Knäuel verklumpen und sorgen dafür, dass sie ihre korrekte Struktur behalten. Auf diese Weise können sie weiter ihre Arbeit verrichten und die Zelle überlebt. Neun solcher Helferproteine sind derzeit im Menschen bekannt, und sie sind sehr vielseitig. Sie agieren in unterschiedlichen Geweben: in Hirn, Herz und Muskelgewebe bis hin zur Augenlinse, deren Trübung sie verhindern.

Funktioniert ein kleines Hitzeschock-Protein nicht richtig, können ganz unterschiedliche Krankheiten wie grauer Star, bestimmte neuronale Erkrankungen oder Krebs die Folge sein. Wissenschaftler sind daher sehr interessiert daran, heraus zu finden, wofür welche Hitzeschockproteine zuständig sind, wie sie molekular aufgebaut sind und wie sie reguliert werden.

Ein Schutzprotein speziell für die embryonale Entwicklung

Nun ist es einer Gruppe von Wissenschaftlern der TU München um Johannes Buchner, Professor für Biotechnologie, Sevil Weinkauf, Professorin für Elektronenmikroskopie und Michael Groll, Professor für Biochemie, erstmals gelungen, im Fadenwurm Caenorhabditis elegans Molekularstruktur und Funktion eines kleinen Hitzeschock-Proteins zu charakterisieren, das ausschließlich in den Eizellen und Embryos des Wurms vorkommt.

Die Forscher fanden heraus, dass das Protein Sip1 spezifisch für die Entwicklung der Embryos zuständig ist und dass es nicht etwa über die Temperatur, sondern über den pH-Wert reguliert wird. „Sip1 ist das einzige kleine Hitzeschock-Protein mit diesen Eigenschaften, das wir kennen“, sagt Buchner.

„Es übernimmt die schwierige Aufgabe, in der embryonalen Lebensphase in einem sich schnell teilenden Gewebe und in saurer Umgebung das Proteingleichgewicht aufrecht zu erhalten. Kein anderes uns bekanntes Hitzeschockprotein kann das“. Die Mitglieder der Familie der kleinen Hitzeschockproteine teilen sich quasi die Arbeit – jeder ist für den Katastrophenschutz in einer anderen Situation zuständig.

Auch wenn Sip1 nur im Fadenwurm vorkommt, sind die Erkenntnisse auch für den Menschen interessant. „Wir wissen noch nicht, ob ein Protein mit ähnlicher Funktion auch in der menschlichen Embryonalentwicklung eine Rolle spielt, doch wir vermuten es“, sagt Buchner. Wie ähnlich sich die kleinen Hitzeschock-Proteine des Wurms und des Menschen an manchen Stellen sind, zeigt die Kristallstruktur des Sip1 Proteins. Die Art und Weise, wie zwei zentrale Teile des Proteinkomplexes zusammenwirken, gleicht der des Alpha-B-Crystallins der menschlichen Augenlinse.

Fertigbauprinzipien beim Aufbau der Schutzproteine

Nur dank der engen Zusammenarbeit der Forscher aus unterschiedlichen Fachbereichen der Fakultät für Chemie war es möglich zu verstehen, wie Struktur, Regulation und Funktion des Sip1 Proteins zusammenhängen. Zunächst stellten sie in biologischen und biochemischen Experimenten fest, wie bedeutsam Sip1 für das Überleben der Fadenwurm-Embryos ist. Sie fanden heraus, wie es, aktiviert durch einen niedrigen pH Wert, wichtige embryonale Proteine bei Hitzestress am Verklumpen hindert.

Elektronenmikroskopische Aufnahmen und Kristallstrukturanalysen fügten ein weiteres Puzzleteil zum Gesamtbild hinzu: Sie zeigten, dass das Protein nicht nur in einer, sondern in mehreren Formen gleichzeitig vorliegt, die entweder aus 32, 28 oder 24 identischen Untereinheiten bestehen. Bei hohem pH Wert sind mehr große Proteinkomplexe vorhanden und das Protein ist nicht aktiv. Sinkt der pH Wert jedoch, zerfallen die großen Komplexe und das Schutzprotein wird aktiviert.

In zukünftigen Projekten wollen die Wissenschaftler um Buchner, Weinkauf und Groll den molekularen Schalter finden, der dafür sorgt, dass die großen Vertreter von Sip1 in die kleinen zerfallen.

Die Forschungen sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) an der TUM geförderten Sonderforschungsbereichs SFB1035. Er hat sich zum Ziel gesetzt herauszufinden, wie Proteine durch Änderungen ihrer 3D Struktur gesteuert werden. Darüber hinaus war an der Finanzierung der Exzellenzcluster „Center for Integrated Protein Science Munich“ (CIPSM) beteiligt.

Ein 3D-Modell des Proteinkomplexes wird bei der „Langen Nacht der Wissenschaften“ des Campus Garching am 27. Juni 2015 von 18 bis 24 Uhr in der Ausstellung der Exzellenzcluster im Institute for Advanced Study zu sehen sein.

Originalpublikation:

Tilly Fleckenstein, Andreas Kastenmüller, Martin Lorenz Stein, Carsten Peters, Marina Daake, Maike Krause, Daniel Weinfurtner, Martin Haslbeck, Sevil Weinkauf, Michael Groll, Johannes Buchner:
The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes, Molecular Cell 58,1-12, June 18, 2015
DOI: 10.1016/j.molcel.2015.04.019

Kontakt:

Prof. Dr. Johannes Buchner
Technische Universität München
Chemie Department
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13340
E-Mail: johannes.buchner@tum.de
Internet: http://www.biotech.ch.tum.de/index.php?id=555

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein einzelnes Gen bestimmt das Geschlecht von Pappeln
02.06.2020 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mögliche physische Spur des Kurzzeitgedächtnisses gefunden
02.06.2020 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Individualisierte Produkte auch in der Massenfertigung

02.06.2020 | Verfahrenstechnologie

Gleichstromnetze für Fabrikhallen

02.06.2020 | Energie und Elektrotechnik

Hochsensitive und schnelle Messverfahren für optische Komponenten: Mit Streulicht zur perfekten Optik

02.06.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics