Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasante Paarbildung – Nachweis eines neuen Reaktionsweges in der Atmosphäre

29.03.2018

Eine besonders rasante Art der Paarbildung konnten Wissenschaftler jetzt im Labor beobachten: Bei der Reaktion von zwei Peroxyl-Radikalen untereinander verdoppeln sich diese Kohlenwasserstoff-Verbindungen. Das heißt es werden stabile Produkte mit dem Kohlenstoffgerüst beider Peroxyl-Radikale gebildet, welche sehr wahrscheinlich eine Peroxid-Struktur aufweisen. Der Nachweis dieses Reaktionsweges wurde jetzt mit Hilfe modernster Messtechnik möglich. Darüber berichten Forschende des Leibniz-Institutes für Troposphärenforschung (TROPOS), sowie der Universitäten Innsbruck und Helsinki in der aktuellen Ausgabe des Fachblatts „Angewandte Chemie“.

Den neuen Erkenntnissen wird große Bedeutung zum besseren Verständnis der Abbauwege von Kohlenwasserstoffen in der Atmosphäre zugeschrieben. Die rasch gebildeten Aufbauprodukte sind meist sehr schwerflüchtig und sind Vorläufer für das sekundäre organische Aerosol, welches bedeutend für das Klima der Erde ist.


Der Nachweis dieses Prozesses gelang dem Team bei Laborexperimenten mittels einer speziellen Strömungsapparatur am TROPOS in Leipzig.

Foto: Tilo Arnhold, TROPOS


Spezielle Strömungsapparatur am TROPOS in Leipzig, welche störungsfreie Untersuchungen von Gasphasenreaktionen bei Atmosphärendruck zulässt.

Foto: Tilo Arnhold, TROPOS

Kohlenwasserstoffe gelten als Bausteine des Lebens, die durch die Kombination der Elemente Kohlenstoff und Wasserstoff Millionen verschiedener chemischer Verbindungen ermöglichen. Zu diesen „organischen Verbindungen“ gehören neben Methan auch eine Vielzahl anderer Gase, die eine wichtige Rolle in der Atmosphäre spielen. So werden die weltweiten Emissionen dieser Nichtmethan-Kohlenwasserstoffe aus der Vegetation und durch menschliche Aktivitäten auf etwa 1,3 Milliarden Tonnen pro Jahr geschätzt.

Entsprechend wichtig ist es, deren Abbauprozesse und die dabei entstehenden Produkte zu kennen.
Der atmosphärische Abbau wird durch Oxidationsmittel, wie Ozon oder OH-Radikale (das „Waschmittel der Atmosphäre“) eingeleitet, wobei fast ausschließlich Peroxyl-Radikale als sehr reaktionsfreudige Zwischenprodukte entstehen, die beispielsweise mit Stickstoffmonoxid (NO) oder mit anderen Peroxyl-Radikalen schnell weiterreagieren.

Bisher wurde angenommen, dass die Bildung von Aufbauprodukten aus der Reaktion zweier Peroxyl-Radikale unbedeutend sei, was auf Befunde aus den 1960ger und -70ger Jahren zurückgeht. Die neuen experimentellen Untersuchungen gekoppelt mit den dazu notwendigen kinetischen Messungen lassen nun den Schluss zu, dass die Bildung der schwerflüchtigeren Aufbauprodukte unter allen Bedingungen in der Atmosphäre bedeutend ist.

„Es ist faszinierend, die Bildung der Peroxyl-Radikale und deren Reaktionsprodukte online im Massenspektrometer verfolgen zu können. Das erlaubt uns einen direkten Einblick in die elementaren Vorgänge während einer chemischen Reaktion“, berichtet Dr. Torsten Berndt vom TROPOS.

Der Nachweis dieses Prozesses gelang dem Team bei Laborexperimenten mittels einer speziellen Strömungsapparatur am TROPOS in Leipzig, welche störungsfreie Untersuchungen von Gasphasenreaktionen bei Atmosphärendruck zulässt. Zum Einsatz kamen dabei erstmals neue massenspektrometrische Techniken, die in Innsbruck und Leipzig entwickelt wurden.

Bei der massenspektrometrischen Analyse wird die nachzuweisende Verbindung ionisiert und dann über das Verhältnis Masse-zu-Ladung identifiziert. Die verwendeten sanften Ionisierungsmethoden gestatten den sensitiven Nachweis von Peroxyl-Radikalen und deren Reaktionsprodukten mit einer Nachweisgrenze von bis zu 1 ppqV. Mit der Technik ist es also möglich, ein spezielles Molekül in einem Gemisch von einer Billiarde (1015) Molekülen zuverlässig zu ermitteln.

Der Nachweis dieses neuen Reaktionsweges in der Atmosphäre hat große Bedeutung für die Klimaforschung, da er ein weiteres Puzzlestück auf der Suche nach bisher noch nicht ausreichend verstandenen Quellen für die Bildung des sekundären organischen Aerosols und der nachfolgenden Wolkenbildung darstellt. Bisher sind Wolken immer noch die große Unbekannte im Klimasystem.

Selbst der jüngste Report des Weltklimarates IPCC sieht in den Wolken den größten Unsicherheitsfaktor in den Klimaszenarien der Zukunft. Die neuen Erkenntnisse können helfen, den Anteil der Vegetation und damit von verschiedenen Landnutzungsformen auf das Klima genauer zu abzuschätzen. Tilo Arnhold

Publikation:
Berndt, T., Scholz, W., Mentler, B., Fischer, L., Herrmann, H., Kulmala, M. and Hansel, A. (2018): Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere. Angew. Chem. Int. Ed. 2018, Volume 57, 3820-3824 & Angew. Chem. 2018, 130, 3882-3886
doi:10.1002/anie.201710989
https://dx.doi.org/10.1002/anie.201710989
Die Studie wurde gefördert von der Österreichischen Forschungsförderungsgesellschaft (FFG, Projektnummer 846050)

Links:
Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
http://www.tropos.de/aktuelles/pressemitteilungen/details/wichtiger-prozess-fuer...
„Wolken verstehen“
https://www.tropos.de/entdecken/gut-zu-wissen/wolken-verstehen/

Weitere Infos:
Dr. Torsten Berndt, Prof. Hartmut Herrmann
Leibniz-Institut für Troposphärenforschung (TROPOS)
Tel. +49-341-2717-7032, -7024
http://www.tropos.de/institut/ueber-uns/mitarbeitende/torsten-berndt/
und
Prof. Armin Hansel
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Österreich
Tel. +43-512-507-6245
https://www.uibk.ac.at/ionen-angewandte-physik/umwelt/mitarbeiter/ah.html.de
oder
Tilo Arnhold
TROPOS-Öffentlichkeitsarbeit
Tel. +49-341-2717-7189
http://www.tropos.de/aktuelles/pressemitteilungen/

Das Leibniz-Institut für Troposphärenforschung (TROPOS) ist Mitglied der Leibniz-Gemeinschaft, die 93 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen.
Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit.
Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen - u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.700 Personen, darunter 9.500 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,8 Milliarden Euro.
http://www.leibniz-gemeinschaft.de

Weitere Informationen:

https://www.tropos.de/aktuelles/pressemitteilungen/details/rasante-paarbildung-n...

Tilo Arnhold | Leibniz-Institut für Troposphärenforschung e. V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert
18.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren
18.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics