Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Räumliche Orientierung - Warum Gitterzellen im Sechseck springen

28.04.2015

Zur Orientierung im Raum erzeugt das Gehirn von Säugetieren virtuelle hexagonale Gitter, die die Umgebung des Tieres gleichsam überspannen. Forscher von LMU und Harvard University liefern nun den mathematischen Beweis für die Honigwabenstruktur.

Neuronale Gitterzellen sind entscheidend für die räumliche Orientierung von Säugetieren. Bei Bewegungen des Tieres werden verschiedene Zellen nacheinander aktiviert, wobei jede einzelne Gitterzelle an mehreren Orten aktiv ist, die zusammengenommen eine virtuelle sechseckige Struktur bilden. So entsteht eine Art Landkarte im Gehirn, durch die sich die genaue Position im Raum bestimmen lässt. Für die Entdeckung dieses faszinierenden biologischen Positionssystems wurde im Jahr 2014 der Nobelpreis vergeben.


Grafik: pupes1 / fotolia.com

Quelle: Uni München

Andreas Herz, Professor für Computational Neuroscience an der LMU, und Dr. Martin Stemmler aus seiner Arbeitsgruppe liefern nun gemeinsam mit Dr. Alexander Mathis von der Harvard University den mathematischen Beweis für die hexagonale Symmetrie dieser neuronalen Aktivitätsmuster. Darüber berichten sie aktuell in der Fachzeitschrift eLife.

Der Vorteil von hexagonalen Gitter-Codes

Die Neurobiologen haben die Mathematik hinter den gitterartigen Raum-Kodierungen untersucht. Mit ihrer Analyse zeigen sie, dass die von Honigwaben bekannte hexagonale Symmetrie der neuronalen Aktivtätsmuster die höchste räumliche Auflösung ermöglicht. Zudem gibt ihre Arbeit darüber Aufschluss, welche Struktur für Gitterzellen von Fledermäusen oder Meeressäugern zu erwarten ist, die sich frei in drei Dimensionen bewegen können.

Herz und seine Kollegen haben berechnet, welche Gittertypen die räumlichen Informationen am besten repräsentieren – sowohl für den zwei- als auch für den dreidimensionalen Raum. „Für die Orientierung im zweidimensionalen Raum ist das beste Aktivitätsmuster hexagonal, wie es auch bei Gitterzellen bereits beobachtet wurde“, sagt Herz. „Im dreidimensionalen Raum ist die Analyse komplexer. Die optimale Struktur ähnelt aufgestapelten Orangen“, sagt Martin Stemmler. Erste experimentelle Ergebnisse bestätigen dieses theoretische Ergebnis: Studien mit Fledermäusen, die von Forschern um Professor Nachum Ulanovsky vom Weizmann Institut in Israel vor kurzem erzielt wurden, deuten auf die Existenz solcher Muster hin.

„Unsere Ergebnisse legen nahe, dass das Gehirn verschiedenste Informationen mithilfe gitterartiger Kodierungsschemata mit hoher Effizienz repräsentieren könnte. Gerade für die Kodierung von komplexen Objekten, zu deren Charakterisierung viele Variablen benötigt werden, wären Gitter-Codes von enormen Vorteil“, sagt Alexander Mathis. Die Forscher vermuten nun, dass Gitterzellen, die bereits unser Verständnis der Raumkodierung revolutioniert haben, auch in anderen Bereichen der Neurowissenschaften eine wichtige Rolle spielen.
(eLife, doi: http://dx.doi.org/10.7554/eLife.05979)

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics