Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um Recycling-Truppe im Meer gelöst

07.02.2020

Der Stickstoffkreislauf im küstennahen Meer ist sehr wichtig für den Abbau von überschüssigen Nährstoffen, die aus den Flüssen ins Meer gespült werden. Trotzdem sind viele seiner Aspekte immer noch nicht ausreichend erforscht. Forschenden aus Bremen ist es nun gelungen, ein lange ungelöstes Rätsel in einem Schlüsselprozess des Stickstoffkreislaufs aufzuklären.

Einer fehlt – so lässt sich kurz das Mysterium beschreiben, das die Forschung lange beschäftigte. Konkret geht es dabei um die Nitrifikation, also die Umwandlung der Stickstoffverbindung Ammoniak erst in Nitrit und dann in Nitrat – ein wichtiger Teil des marinen Stickstoffkreislaufs.


Einzelzell-Aufnahmen von Ammoniak-oxidierenden Archaeen und Nitrit-oxidierenden Nitrospinae in der Umwelt. Die unterschiedliche Häufigkeit und Größe kann klar erkannt werden.

Max-Planck-Institut für Marine Mikrobiologie/K. Kitzinger


Die Proben des vorliegenden Papers stammen aus dem Golf von Mexiko.

Max-Planck-Institut für Marine Mikrobiologie/K. Kitzinger

Im Meer sind diese zwei Prozesse ausgeglichen und der Großteil des verfügbaren Stickstoffs liegt als Nitrat, dem Endprodukt der Nitrifikation, vor. Wer den ersten Schritt dieser zweigeteilten Umwandlung im Meer ausführt, ist schon länger geklärt: Ammoniak oxidierende Archaea, die zu den häufigsten Organismen auf unserem Planeten zählen, verarbeiten das Ammonium zu Nitrit.

Den zweiten Part, die Verwandlung von Nitrit zu Nitrat, übernehmen Nitrit-oxidierende Bakterien, vor allem Nitrospinae. Da es von diesen Bakterien aber zehn Mal weniger gibt als von den Ammoniak-oxidierenden Archaea, vermuteten Wissenschaftlerinnen und Wissenschaftler, dass es noch andere, unbekannte, aber sehr häufige Nitrit-Oxidierer geben muss.

Schneller wachsen, schneller sterben

Forschende des Max-Planck-Instituts für Marine Mikrobiologie konnten dieses Mysterium zusammen mit Kolleginnen und Kollegen der Universität Wien sowie der University of Southern Denmark und des Georgia Institute of Technology jetzt lösen.

„Wir zeigen mit unseren Daten, dass wir überraschenderweise vermutlich schon alle Mitspieler kennen“, sagt Katharina Kitzinger, Erstautorin der Veröffentlichung, die Anfang Februar im Fachmagazin Nature Communications erschienen ist.

Bisher wurde hauptsächlich die Anzahl der am Prozess beteiligten Mikroben erhoben. Die Forschenden um Katharina Kitzinger haben dagegen auch die Biomasse der Mikroorganismen sowie die Wachstumsraten und Aktivität einzelner Zellen untersucht.

Die Erklärung dafür, weshalb die Ammoniak-oxidierenden Archaea zehn Mal häufiger vorkommen als die Nitrospinae, liegt ihren Daten zufolge nicht wie bisher angenommen in der unterschiedlichen Größe der Mikroorganismen oder des langsameren Wachstums von Nitrospinae.

„Im Gegenteil, unsere Ergebnisse zeigen, dass die Nitrospinae deutlich aktiver sind und sehr viel schneller wachsen als die Ammoniak-oxidierenden Archaea. Nitrospinae sind somit deutlich effizienter als die Archaea“, erläutert Kitzinger.

Und fügt an: „An sich würde man daher erwarten, dass die Nitrospinae auch deutlich häufiger sind – dass dem nicht so ist, muss an ihrer sehr hohen Sterberate liegen. Damit lässt sich der ausgeglichene marine Nitrifikationsprozess erklären. Die Existenz weiterer, unbekannter Nitrit-Oxidierer in der Wassersäule des Ozeans, die zahlenmäßig bedeutsam sind, ist somit sehr unwahrscheinlich.“

Stickstoff und Futter für Freunde

Gleichzeitig untersuchten die Forschenden, welche Stickstoffverbindungen die Partner Ammoniak-oxidierende Archaea und Nitrospinae für ihr Zellwachstum nutzen. „Während die Archaea fast ausschließlich Ammonium verwenden, nutzen Nitrospinae vor allem organischen Stickstoff, und zwar Harnstoff und Cyanat“, sagt Kitzinger. „So konkurrieren die beiden Mikroorganismen nicht um dieselbe Stickstoffquelle.“

Vielmehr helfen sie sich gegenseitig: Die Nitrospinae spucken vermutlich nach der Aufnahme des organischen Stickstoffs wieder etwas Ammonium aus und stellen so wiederum die Energiequelle für ihre Freunde, die Archaea, zur Verfügung. Eine symbiotische Win-Win-Situation.

Die Daten stammen aus dem Golf von Mexiko, wo der Prozess der Nitrifikation durch den hohen Nährstoffeintrag aus Flüssen, wie dem Mississippi, sehr wichtig ist.

„Die Zusammensetzung der am Prozess beteiligten Mikroorganismen ist aber weltweit sehr ähnlich“, sagt Kitzinger. „Darum ist es sehr wahrscheinlich, dass unsere Erkenntnisse auf andere Meeresregionen übertragen werden können.“

Wissenschaftliche Ansprechpartner:

Dr. Katharina Kitzinger
Abteilung Biogeochemie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-649
E-Mail: kkitzing@mpi-bremen.de

Dr. Hannah K. Marchant
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-630
E-Mail: hmarchan@mpi-bremen.de

Originalpublikation:

Katharina Kitzinger, Hannah K. Marchant, Laura A. Bristow, Craig W. Herbold, Cory C. Padilla, Abiel T. Kidane, Sten Littmann, Holger Daims, Petra Pjevac, Frank J. Stewart, Michael Wagner, Marcel M. M. Kuypers: Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nature Communications, Februar 2020

DOI: 10.1038/s41467-020-14542-3

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie
Weitere Informationen:
https://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mehr Vielfalt: Öko-Landwirtschaft bietet Heimat für 60% mehr Schmetterlingsarten
02.04.2020 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

nachricht Hirntumoren bei Kindern: Erblicher Gendefekt bringt die Eiweißregulation aus dem Gleichgewicht
02.04.2020 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen

02.04.2020 | Physik Astronomie

Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

02.04.2020 | Geowissenschaften

Wie man Schmutz einfach entfernt

02.04.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics