Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um kaltes Wasser gelöst

01.06.2012
Unterkühlte Flüssigkeit existiert in zwei Formen unterschiedlicher Dichte

Was in der Forschung lange als unergründliches Rätsel galt, haben Wissenschaftler der Universität Innsbruck um Prof. Thomas Lörting jetzt mit theoretischen und experimentellen Arbeiten belegt: stark unterkühltes Wasser setzt sich aus zwei unterschiedlich dichten Flüssigkeiten zusammen.


In einem Druckzylinder kühlen die Innsbrucker Forscher Wasser auf sehr tiefe Temperaturen ab. Eva Fessler/Uni Innsbruck


Unterkühltes Wasser hat eine starke Tendenz zu kristallisieren und kann deshalb nur sehr schwer untersucht werden. Eva Fessler/Uni Innsbruck

Es bedeckt über zwei Drittel unserer Erde und bildet den Grundstoff des menschlichen Körpers. Wasser ist der „Urstoff“, der Leben auf der Erde möglich macht. Es ist allgegenwärtig und birgt doch viele Geheimnisse. Die Wissenschaft kennt heute über 60 Eigenschaften, in denen sich Wasser von fast allen anderen Flüssigkeiten unterscheidet. Während etwa fast alle Festkörper in der eigenen Schmelze untergehen, schwimmt Eis auf dem Wasser. Sein Gefrierpunkt liegt bei null Grad Celsius, doch kann Wasser auch stark unterkühlt werden.

„Je tiefer es unterkühlt wird, desto ausgeprägter werden seine anomalen Eigenschaften“, erzählt Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck. Dass Wasser bei sehr tiefen Temperaturen aus zwei unterschiedlichen Flüssigkeiten bestehen könnte, wurde aufgrund experimenteller Beobachtungen bereits in den 1980-er Jahren vermutet. Lange Zeit blieb diese Theorie allerdings äußerst umstritten, weil sie in der Praxis nicht direkt nachweisbar war. „Unterkühltes Wasser hat eine starke Tendenz zu kristallisieren und kann deshalb nur sehr schwer untersucht werden“, erklärt der Physikochemiker Lörting.

Wichtige Hinweise lieferte aber die Untersuchung der festen Form von Wasser. Diese besteht nicht aus Eiskristallen, sondern behält die molekulare Struktur der flüssigen Form - Wasser das fest, aber nicht gefroren ist. „Dabei zeigte sich, dass es abhängig vom Umgebungsdruck zwei unterschiedliche Formen von festem Wasser - oder amorphem Eis - gibt, eine mit niedriger Dichte und eine hochdichte Form.“ Die Vermutung lag nun nahe, dass beim Übergang von diesen festen in flüssige Phasen ebenfalls zwei unterschiedlich dichte Flüssigkeiten entstehen.

Bisher nicht direkt gemessen

Es konnte bereits gezeigt werden, dass sich festes Wasser niedriger Dichte bei -137 Grad Celsius verflüssigt. In einer in der Fachzeitschrift Physical Review Letters veröffentlichten Forschungsarbeit haben Thomas Lörting und sein Team nun erstmals auch für hochdichtes Wasser bestimmt, dass das Relaxationsverhalten bei steigender Temperatur tatsächlich flüssigkeitsartig wird. „Bei einem Druck zwischen 1000 und 2000 bar verflüssigt sich das Wasser zwischen circa -138 und -133 Grad Celsius“, sagt Lörting. Da das Wasser in einem kleinen Zylinder unter einen Hochdruckpresse gekühlt wird und nicht direkt beobachtet werden kann, mussten die Forscher ein neues Verfahren für ihre Messung entwickeln. Sie beobachteten, wie lange es dauert bis das hochdichte Wasser bei einer bestimmten Temperatur ins Gleichgewicht kommt und einen Ruhezustand einnimmt.

Substanzen gelten dann als flüssig, wenn dies innerhalb von 100 Sekunden geschieht. Während dies bei -163°C viele Tage dauert, so sind es bei -138°C nur mehr wenige Minuten. „Dieser Phasenübergang wurde bisher noch von niemandem direkt gemessen. Gemeinsam mit früheren Ergebnissen liefert uns dies einen klaren Hinweis auf die Existenz von zwei unterschiedlichen Flüssigkeiten von Wasser“, ist Lörting stolz.

Die Daten aus dem Experiment decken sich mit einer theoretischen Arbeit, die Thomas Lörting gemeinsam mit amerikanischen Kollegen vor kurzem in Nature Scientific Reports veröffentlicht hat. Mit Computermodellen wurde darin gezeigt, dass die nun gemessenen Ergebnisse nur durch die Existenz von zwei Flüssigkeiten erklärt werden können. Bereits im vergangenen Jahre haben die Innsbrucker Forscher die zwei Flüssigkeiten experimentell erzeugt und wieder eingefroren. „Die niedrig- und hochdichten Formen verhalten sich wie Wasser und Öl. Sie entmischen sich und bilden zwei Schichten“, erläutert Thomas Lörting das Experiment. Die Wissenschaftler entnahmen die gefrorene Probe dem Druckzylinder und lösten die beiden Eisformen voneinander. „Bei höheren Temperaturen expandiert die hochdichte Eisform und geht in die niedrigdichte Form über“, erzählt der Chemiker, „ein weiterer Beweis für die Existenz von zwei flüssigen Formen von Wasser.“

Diese Arbeiten entstanden im Rahmen der Forschungsplattform Material- und Nanowissenschaften an der Universität Innsbruck und wurden vom Europäischen Forschungsrat (ERC), dem österreichischen Forschungsförderungsfonds (FWF) und der Österreichischen Akademie der Wissenschaften (ÖAW) finanziell unterstützt.

Publikationen:

Relaxation Time of High-Density Amorphous Ice. Philip H. Handle, Markus Seidl, Thomasa Loerting, Phys. Rev. Lett. 108, 225901 (2012). doi:10.1103/PhysRevLett.108.225901
Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water. Nicolas Giovambattista,Thomas Loerting,Boris R. Lukanov& Francis W. Starr. Scientific Reports 2 (2012) 390. doi:10.1038/srep00390 (open access)
Equilibrated high-density amorphous ice and its first-order transition to the low-density form. Katrin Winkel, Erwin Mayer, Thomas Loerting. J. Phys. Chem. B 115 (2011) 14141-8. doi:10.1021/jp203985w

Volumetric study consistent with a glass-to-liquid transition in amorphous ices under pressure. Markus Seidl, Michael S. Elsaesser, Katrin Winkel, Gerhard Zifferer, Erwin Mayer, Thomas Loerting. Phys. Rev. B 83 (2011) doi:10.1103/PhysRevB.83.100201

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at
http://www.uibk.ac.at/public-relations/presse/archiv/2012/060101/winkel11-jpcb-video.mpg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Integrierte Zuckermoleküle schonen Zellkulturen
17.05.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics