"Recycling-Störung" schadet dem Hirn

Das menschliche Gehirn besteht aus Milliarden Nervenzellen (Neuronen), die durch hunderte Billionen Synapsen miteinander in Kontakt stehen. An den Synapsen werden Signale von Zelle zu Zelle weitergegeben. Dafür sind winzige Bläschen im Zellinnern, die synaptischen Vesikel, unverzichtbar.

Doch diese Vesikel sind knapp – und müssen wiederverwertet werden, um die Signalübertragung reibungslos in Gang zu halten. Eine Forschungsgruppe um Professor Dr. Jürgen Klingauf, Direktor des Instituts für Medizinische Physik und Biophysik der Universität Münster und Leiter einer Arbeitsgruppe am münsterschen Center for Nanotechnology (CeNTech), konnte nun die Beteiligung sogenannter Früher Endosomen am „Recycling“ im Gehirn mittels hochauflösender Mikro- und Nanoskopie belegen.

In einer Studie wiesen die Wissenschaftler gemeinsam mit einer Göttinger Gruppe nach, dass die Deaktivierung eines einzigen Proteins bei Mäusen zu schlechterer Koordination von Bewegungen und zu einem schwer gestörten räumlichen Langzeit-Erinnerungsvermögen führt. Die Bedeutung der Endosomen beim Vesikelrecycling wird in der Wissenschaft bereits seit 30 Jahren angenommen, konnte bisher jedoch nicht zweifelsfrei bestätigt werden. Die Studie der Klingauf-Gruppe wurde nun im „EMBO Journal“, einer Fachzeitschrift der European Molecular Biology Organisation, veröffentlicht.

Damit Neuronen untereinander und mit anderen Zellen – vor allem Muskelzellen – kommunizieren können, müssen elektrische Signale in chemische Signale umgewandelt werden. Synaptische Vesikel werden im Innern einer Zelle freigesetzt, verschmelzen mit der Zellmembran und setzen dabei chemische Botenstoffe, die Neurotransmitter, frei. Diese Neurotransmitter überwinden den synaptischen Spalt zwischen beiden beteiligten Zellen und lösen an der Außenmembran der nachgeschalteten Zelle wiederum ein elektrisches Signal aus. Dieser Prozess geschieht im gesamten Körper. Anschließend werden die Vesikel wiederverwertet – und zwar sowohl ihre Außenmembranen als auch die enthaltenen Proteine. Wie das genau geschieht, wird seit Jahrzehnten diskutiert. Besonders die Beteiligung der Frühen Endosomen beim Recycling synaptischer Vesikel im Gehirn war bisher umstritten.

Die Wissenschaftler aus Münster und Göttingen schalteten bei Mäusen ein einziges Protein, die gehirnspezifischen sigma-1B-Untereinheit des Adapterprotein-Komplexes AP-1, aus. AP-1 spielt eine Schlüsselrolle bei der Abschnürung von Vesikeln aus Frühen Endosomen und könnte daher auch für die Bereitstellung synaptischer Vesikel wichtig sein. Die Deaktivierung der sigma-1B-Untereinheit führt tatsächlich zu Defekten im Recycling synaptischer Vesikel, was die Beteiligung der Frühen Endosomen nachweist. Dadurch stehen insgesamt weniger synaptische Vesikel für die Signalweiterleitung zur Verfügung – die betroffenen Tiere können ihre Bewegungen schlechter koordinieren und weisen ein schwer gestörtes räumliches Langzeit-Erinnerungsvermögen auf.

Menschen, die an einer bestimmten mit dem X-Chromosom verknüpften Krankheit leiden, zeigen ähnliche Symptome: Sie sind geistig stark behindert, lernen erst mit vier bis sechs Jahren laufen, entwickeln keine verständliche Sprachfähigkeit und benötigen lebenslang umfassende Pflege. Die Forschung könnte entscheidend zum Verständnis dieser Krankheit beitragen – die Ursache für den Defekt wird am sigma-1B-Locus vermutet, also dem Ort auf dem X-Chromosom, wo die Informationen für die Synthese des Gens gespeichert sind.

Literatur: Glyvuk N et al. (2010): AP-1/?1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory. EMBO Journal 29, 1318 – 1330; doi:10.1038/emboj.2010.15

Media Contact

Dr. Christina Heimken idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer