Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle in der Immunkommunikation: Chaperone erkennen unfertige Signalmoleküle im Immunsystem

23.09.2019

Die Zellen des Immunsystems stimmen sich laufend miteinander ab. Als Informationsträger nutzen sie komplexe Protein-Moleküle, die sie in einem mehrstufigen Prozess bilden. Wie Kontrollmoleküle – sogenannte Chaperone – unfertige Signalproteine erkennen und diese daran hindern, die Zelle zu verlassen, hat nun ein Team unter Leitung von Forscherinnen und Forschern der Technischen Universität München (TUM) herausgefunden.

Gelangen Krankheitserreger in den Organismus, muss die körpereigene Abwehr rasch reagieren. Die Eindringlinge werden von den weißen Blutkörperchen identifiziert; diese geben die Information an andere Immunzellen weiter.

Dazu schütten sie Interleukine – komplexe Signalproteine – aus, die an passende Rezeptoren in den Empfängerzellen andocken und diese Zellen zum Beispiel dazu bringen, sich intensiv zu vermehren und Abwehrmoleküle freizusetzen.

Qualitätskontrolle hält unfertige Moleküle fest

Forscher und Forscherinnen der TUM, des Helmholtz Zentrums München und der Universität Stanford haben nun am Beispiel von Interleukin 23 gezeigt, wie die Zellen dafür sorgen, dass die Interleukin-Signalproteine korrekt aufgebaut werden.

„Interleukin 23 steht zurzeit im Mittelpunkt intensiver Forschung, weil es nicht nur eine große Rolle bei der Abwehr von Krankheitserregern spielt, sondern auch selbst Autoimmunkrankheiten auslösen kann,“ erklärt Matthias Feige, Professor für Zelluläre Proteinbiochemie an der TUM und Leiter des Forschungsprojekts.

Interleukin 23 besteht aus zwei Proteinen, die sich in der Zelle zu einem aktiven Komplex verbinden müssen, um die gewünschten Signale auslösen zu können. Wie die Wissenschaftler und Wissenschaftlerinnen gezeigt haben, halten sogenannte Chaperone den mit IL23-alpha bezeichneten Teil des Interleukins so lange in der Zelle fest, bis er in den vollständigen Komplex eingebaut ist.

So stellt die Zelle sicher, dass sie kein unverbundenes IL23-alpha abgibt, und steuert damit die Biosynthese dieses wichtigen Interleukins. Chaperone sind selbst Proteinmoleküle – molekulare Maschinen – die dafür sorgen, dass andere Proteine korrekt aufgebaut werden.

„Wir konnten zeigen, dass das unverbundene IL23-alpha gewissermaßen offene chemische Bindungen hat, an die das Chaperon andocken kann,“ erläutert Feige. Im vollständigen Interleukin 23 sind diese Bindungen geschlossen, sodass das Chaperon keinen Angriffspunkt mehr findet und das Gesamtmolekül die Zelle verlassen kann.

Gezielt in die Immunzellkommunikation eingreifen

Da das IL23-alpha alleine nicht außerhalb der Zellen auftritt, war unklar, ob es selbst auch das Immunsystem beeinflussen kann. Das konnten die Forscherinnen und Forscher mit einer geringfügig modifizierten Version des Moleküls überprüfen, die sie zunächst am Computer entworfen und anschließend im Labor hergestellt haben. In dieser neuen Molekülvariante waren die Bindungen, an die das Chaperon hätte binden können, geschlossen.

„Die veränderten Moleküle können die Zelle ungehindert verlassen“, sagt Susanne Meier, Erstautorin der Studie. „Sie binden dann an dieselben Rezeptoren wie das vollständige Interleukin 23 und lösen dort eine ähnliche Reaktion aus – wenn auch in abgeschwächter Form.“ IL23-alpha kann demnach auch als Signalmolekül fungieren, wenn man es mit molekularem Engineering verändert und so die Qualitätskontrolle in der Zelle umgeht.

„Es ist möglich, dass die modifizierten Moleküle noch an weitere Rezeptoren in Immunzellen binden und diese in einer noch unbekannten Weise beeinflussen“, erklärt Feige. „Das wollen wir als nächstes untersuchen“. Die Ergebnisse könnten Grundlage von Medikamenten werden, die mit modifizierten Interleukinen gezielt in das Immunsystem eingreifen.

Mehr Informationen:

Die Professur von Matthias Feige wird über das Institute of Advanced Study der TUM und das Marie-Curie-COFUND-Programm aus Mitteln der Exzellenzinitiative des Bundes und der Länder und des Siebten Forschungsrahmenprogramms der Europäischen Union finanziert. Die Arbeiten wurden im Rahmen des Sonderforschungsbereichs 1035 „Kontrolle von Proteinfunktion durch konformationelles Schalten“ durchgeführt.

Wesentlich an dem Projekt beteiligt waren Forschende des Zentrums für Allergie und Umwelt (ZAUM). Untersuchungen zur Struktur und Wechselwirkung der Proteine wurden am Bayerischen NMR-Zentrum durchgeführt. Beides sind gemeinsame Einrichtungen der TUM und des Helmholtz Zentrums München.

Hochauflösende Bilder:

https://mediatum.ub.tum.de/1519865

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Feige
Technische Universität München
Professur für Zelluläre Proteinbiochemie
Tel.:+49(0)89 289 13667
matthias.feige@tum.de

Originalpublikation:

Publikation: S. Meier, S. Bohnacker, C. J. Klose, A. Lopez, C. A. Choe, Ph. W.N. Schmid, N. Bloemeke, F. Rührnößl, M. Haslbeck, J. Esser-von Bieren, M. Sattler, Po-Ssu Huang & M. J. Feige; The molecular basis of chaperone-mediated interleukin 23 assembly control.
Nature Communications 10, 4121 (2019); 
DOI: 10.1038/s41467-019-12006-x
https://doi.org/10.1038/s41467-019-12006-x

Weitere Informationen:

http://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35693/ - diese Meldung im Web
http://www.professoren.tum.de/feige-matthias-j/ - Professorenprofil von Matthias Feige
http://www.department.ch.tum.de/cell/home/ - Professur für Zelluläre Proteinbiochemie
http://www.ias.tum.de/start/ - Institute for Advanced Study
http://www.bnmrz.org - Bayerisches NMR-Zentrum
http://www.zaum-online.de - Zentrum Allergie und Umwelt

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Immunsystem Immunzellen Interleukin Qualitätskontrolle Signalmoleküle TUM Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics