Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinreiche Beleuchtung

25.08.2015

Sie sind bis zu 80 Prozent energieeffizienter als Glühbirnen und halten ca. fünf Mal so lang wie Energiesparlampen: LEDs werden immer häufiger zur Beleuchtung eingesetzt. Noch besteht aber Optimierungsbedarf bei weißen LEDs, denn bisherige Herstellungsverfahren kosten entweder sehr viel oder drücken die Lebensdauer der LEDs.

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt eine neue Methode entwickelt und sind dabei ungewöhnliche Wege gegangen: Ihre LEDs bestehen zum Teil aus fluoreszierenden Proteinen.


Das Bild zeigt die gelartigen Netzwerke, die aus einer konzentrierten wässrigen Protein-Lösung sowie einer Polymermischung bestehen. (Bild: Michael Weber)

Ob als Raum- oder Straßenbeleuchtung, in Ampeln oder in Bildschirmen: LEDs sind aus unserem Alltag nicht mehr wegzudenken. Eine lange Lebensdauer, hohe Energieeffizienz, Umweltfreundlichkeit sowie der geringe Wartungsaufwand sind dabei nur einige Vorteile dieser Technologie. Die Herstellung weißer Leuchtdioden ist jedoch kompliziert.

Die Mischung macht´s

Um zukunftsweisend Weißlicht zu erzeugen, gibt es zwei Verfahren, die beide Nachteile haben: Bei der ersten Methode werden dünne Schichten aus anorganischen Materialien wie Phosphor oder Seltenen Erden auf eine blaue LED aufgetragen. Diese verfügen über eine lange Lebensdauer und emittieren Licht in optimaler Stärke.

Durch die Seltenen Erden und das aufwändige Herstellungsverfahren sind die Fabrikationskosten extrem hoch und nicht nachhaltig. Alternativ werden Organische LEDs eingesetzt, bei denen mehrere organische Halbleiterschichten einem Sandwich gleich zwischen zwei Elektroden aufgebracht werden.

Diese erreichen jedoch eine geringere Leistung sowie Lebensdauer als ihre anorganischen Pendants. Optimal wäre daher ein Mix dieser beiden Varianten, die die Vorteile beider Methoden vereint.

Genau solch ein Mix ist FAU-Wissenschaftlern nun gelungen – mit Hilfe von fluoreszierenden Proteinen, die in einem gummiartigen Material eingebettet auf eine LED aufgebracht werden. Um die neuartigen LEDs herzustellen, haben sich Dr. Rubén D. Costa vom Exzellenzcluster „Engineering of Advanced Materials“ der FAU und sein Kollege Prof. Dr. Uwe Sonnewald vom Emerging Field Projekt „Synthetic Biology“ der FAU zusammengeschlossen.

Proteine im Gel-Bett

„Die fluoreszierenden Proteine vereinen die gewünschten Eigenschaften“, erklärt Dr. Rubén D. Costa vom Lehrstuhl für Physikalische Chemie I. „Sie sind umweltfreundlich und kostengünstig in der Herstellung. Zudem lässt sich durch die Proteine leicht die Farbeinstellung – ob farbig oder weiß – steuern.“

Einen Haken gibt es jedoch: Die Proteine sind nur in einer wässrigen Pufferlösung stabil, so dass Standard-Beschichtungsverfahren nicht angewendet werden können. Zudem mussten die Wissenschaftler sicherstellen, dass die Proteine unter unterschiedlichsten Umweltbedingungen, wie beispielsweise hohe Temperaturen oder Feuchtigkeit, stabil arbeiten.

Ihre Lösung: Die FAU-Forscher entwickelten eine neue Technik zur Beschichtung. Sie betteten die Proteine in ein Gel ein, das aus einer konzentrierten wässrigen Protein-Lösung sowie einer Polymermischung besteht. Die Polymerstoffe verbinden dabei die wässrige Protein-Lösung zu einem gelartigen Netzwerk und sorgen dafür, dass die benötigte Feuchtigkeit gespeichert bleibt.

Durch Vakuumtrocknung verwandelt sich das Gel in ein gummiartiges Material, das sich für die mehrlagige Beschichtung der LEDs eignet – und die Proteine vor äußeren Einflüssen schützt.

„Mit unserer Methode haben wir es geschafft, langlebige und effiziente weiße LEDs umweltfreundlich und kostengünstig herzustellen. Das ist für zukünftige Generationen von LEDs wegweisend“, freut sich Costa.

Wissenschaftliche Exzellenz

Am Exzellenzcluster „Engineering of Advanced Materials“ der FAU erforschen und entwickeln 200 Wissenschaftler neuartige Materialien. In über 90 Projekten arbeiten die Forscher aus neun Disziplinen (Angewandte Mathematik, Chemie- und Bioingenieurwesen, Chemie, Elektrotechnik, Informatik, Medizin, Maschinenbau, Physik und Werkstoffwissenschaften) entlang der Prozesskette vom Molekül bis zum Material zusammen.

Die Emerging Fields Initiative hat die FAU im Jahr 2010 ins Leben gerufen, um neuartige und möglichst interdisziplinär angelegte Forschungsprojekte mit hohem Entwicklungs- und Erfolgspotential frühzeitig zu erkennen, unbürokratisch zu fördern und zur Drittmittelfähigkeit zu verhelfen. Aus den ersten beiden Ausschreibungsrunden sind 18 EFI-Projekte hervorgegangen, die mit insgesamt rund 12 Millionen Euro gefördert werden.

Ihre Ergebnisse haben die Wissenschaftler in der Zeitschrift Advanced Materials veröffentlicht: http://dx.doi.org/10.1002/adma.201502349

Weitere Informationen für die Medien:
Prof. Dr. Uwe Sonnewald
Tel.: 09131/85-28255
uwe.sonnewald@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Trockenstress – Biologen entschlüsseln SOS-Signal von Pflanzen
27.03.2020 | Universität Hohenheim

nachricht Der Venusfliegenfallen-Effekt: Neue Studie zeigt Fortschritte der Forschung an Immunproteinen
26.03.2020 | Jacobs University Bremen gGmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics