Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinimport in Peroxisomen: Bochumer und Osnabrücker Forscher entdecken molekulares Scheunentor

04.03.2010
Wie kommt das Kamel durchs Nadelöhr?
Nature Cell Biology: Riesen-Pore ist die größte je beobachtete

Wenn bekannte Proteintransportkanäle die Eingangstür in Zellorganellen sind, dann verfügen Peroxisomen über ein wahrhaftes Scheunentor. Eine solche Riesenpore, durch die gefaltete, mehrteilige Proteine eingelassen werden können, hatten Prof. Dr. Ralf Erdmann und Dr. Wolfgang Schliebs (Medizinische Fakultät der RUB) schon vor fünf Jahren postuliert.

Jetzt konnten sie sie in Zusammenarbeit mit Biophysikern aus Osnabrück nachweisen. "Wenn man von der Pore des Zellkerns absieht, handelt es sich um die größte jemals beobachtete Proteinimport-Pore", verdeutlicht Prof. Erdmann.

Dass dieses Tor der Superlative trotzdem jahrzehntelang unentdeckt bliebt, führen die Forscher auf seine rasante Dynamik zurück: Es wird nur ganz kurz geöffnet und schließt sich sofort wieder. Die Forscher berichten in der aktuellen Ausgabe von Nature Cell Biology.

Ein Rätsel: Wie werden Riesenproteine importiert?

Peroxisomen sind Organellen, die in fast allen Zellen vorkommen, und deren Schädigungen fast immer tödlich sind. Sie sind nicht nur von medizinischem Interesse, sondern aufgrund ihrer Fähigkeit, Proteine im gefalteten, sogar oligomerisierten (mehrteiligen) Zustand zu importieren, auch von großem Interesse für die molekulare Zellbiologie. Wie Peroxisomen diese riesigen Proteine importieren, war bislang ein Rätsel. "Besonders rätselhaft war, dass peroxisomale Proteine auf ihrem Weg eine Membran durchqueren, die als undurchlässig auch für die kleinsten chemischen Bausteine gilt", erklärt Prof. Erdmann.

Nur ein "Scheunentor" kann Proteinknäuel durchlassen

Proteine müssen vom Entstehungsort bis hin zu ihrem Zielort oftmals Membranen überqueren. Die zugrunde liegenden Mechanismen vieler dieser Transportwege sind weitestgehend bekannt, nicht aber für peroxisomale Proteine. Für den Import in Organellen wie zum Beispiel Mitochondrien werden die Proteine entfaltet und dann schnurartig durch die Membran gefädelt. Erst auf der anderen Seite werden sie dann in ihre fertige, räumliche Struktur gebracht (Abb. 1A). Die Transportkanäle für entfaltete Proteine sind entsprechend klein, als Durchmesser reichen bereits 1 bis 2 Nanometer (nm, entspricht 1/100.000 bis 1/50.000 mm). Die Proteine für Peroxisomen sind um ein Vielfaches größer, da sie nicht entfaltet werden und oftmals aus mehreren Einheiten bestehen. Es konnte gezeigt werden, dass selbst 9 nm große Goldpartikel über die peroxisomale Membran gelangen, ohne diese zu beschädigen. "Würde man die bekannten Transportkanäle als 'Eingangstüren' in ihre Organellen bezeichnen, so würde man für die Peroxisomen eine Pore mit den Dimensionen eines 'Scheunentores' erwarten", so Prof. Erdmann. Die Bochumer suchten also nach diesem peroxisomalen Scheunentor von Pore. "Dass diese Pore über Jahrzehnte hinweg unentdeckt blieb, liegt wahrscheinlich an der ausgesprochenen Dynamik der ausgeklügelten Importmaschinerie von Peroxisomen, die dazu führt, dass der Eingang nur für kurze Zeit geöffnet und sofort wieder geschlossen wird", erklärt Prof. Erdmann.

Rezeptor wird Bestandteil des Kanals

Neu hergestellte peroxisomale Proteine werden von Importrezeptoren in der Zellflüssigkeit erkannt und an die peroxisomale Membran dirigiert, wo die Proteine auf bislang unbekannte Weise über die Membran transportiert werden. Der peroxisomale Importrezeptor Pex5p kommt in allen Zellen in zwei Zustandsformen vor: In löslicher Form in der Zellflüssigkeit und in einer integralen membran-gebundenen Form in Peroxisomen. Die Bochumer Gruppe verfolgte die Idee, dass der membrangebundene Rezeptor selbst integrativer Bestandteil eines kurzlebigen Kanals ist, durch den dann das mitgeführte peroxisomale Protein die Membran passieren kann.

Tor in künstlicher Membran öffnet sich weit

Jetzt ist es der Bochumer Arbeitsgruppe gelungen, einen Membranproteinkomplex, der hauptsächlich aus Rezeptor und seinem Dockingprotein besteht, aus peroxisomalen Membranen der Bäckerhefe zu isolieren und in künstliche Membranen (Proteoliposomen) einzubauen. Mit diesen Liposomen wurde am biophysikalischen Institut der Universität Osnabrück unter Leitung von Prof. Dr.-Ing. Richard Wagner die Existenz eines dynamischen wassergefüllten Kanals nachgewiesen. Dieser war allerdings nicht groß genug, um Proteine zu transportieren. Es bedurfte eines Tricks, um die Pore weit zu öffnen: Dazu mussten die Proteoliposomen mit gereinigten löslichen Rezeptorkomplexen aus der Zellflüssigkeit vorinkubiert werden. Dabei zeigte sich, dass der Kanal in Abhängigkeit von der Größe der Rezeptor-Cargo Komplexe sehr schnell seine Öffnungszustände ändern kann (Abbildung 1B). Die größten Öffnungszustände wurden mit über 9 nm Porendurchmesser gemessen.

Titelaufnahme

Michael Meinecke, Christian Cizmowski, Wolfgang Schliebs, Vivien Krüger, Sabrian Beck, Richard Wagner and Ralf Erdmann: The peroxisomal importomer constitutes a large and highly dynamic pore. In: Nat Cell Biol. (2010) 12, 273 - 277. doi:10.1038/ncb2027

Begleitkommentar von Fred D. Mast, Andrei Fagarasanu & Richard Rachubinski : The peroxisomal protein importomer: a bunch of transients with expanding waistlines. In "News and Views", Nat Cell Biol. (2010) 12, 203 - 205.

Postulat der Riesenpore von 2005: (Nat Rev Mol Cell Biol. 2005 Sep;6(9):738-42)

Weitere Informationen

Prof. Dr. Ralf Erdmann, Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24943

ralf.erdmann@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn Hefen miteinander reden
16.08.2019 | Technische Universität Dresden

nachricht Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert
16.08.2019 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics