Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020

LMU-Wissenschaftler haben eine Methode entwickelt, mit der sie lebenswichtige Proteine stufenlos steuerbar aus der Zelle verschwinden lassen können – ein wertvolles neues Werkzeug für die biomedizinische Forschung.

Proteine sind zentrale Bestandteile jeder Zelle. Alle grundlegenden Prozesse des Lebens, etwa Zellteilung, Wachstum und Stoffwechsel, aber auch die Entstehung von Krankheiten, werden durch zelluläre Proteine kontrolliert.


Bei der mittleren Zelle (grau) wurden gezielt gleich drei verschiedene Protein entfernt, ein Protein der Zellkernhülle (Lamin A, grün), ein Chromatinprotein (CENPA, türkis) und das Replikationsprotein (PCNA, magenta).

Bild: Dr. Wen Deng, LMU

Um diese Prozesse umfassend zu verstehen, sind Untersuchungen zur Funktion der beteiligten Proteine unerlässlich. Um die Rolle eines Proteins zu analysieren, beobachten Forscher, was sein Verlust bewirkt. Dazu wird im Experiment häufig das entsprechende Gen mutiert oder ganz ausgeschaltet.

Bei lebenswichtigen Proteinen ist dieser Ansatz jedoch nicht möglich, da die Zellen dann absterben, bevor sich funktionelle Studien durchführen lassen. LMU-Wissenschaftler um Professor Heinrich Leonhardt vom Biozentrum der LMU haben nun ein Werkzeug entwickelt, das dieses Hindernis umgeht:

Ihre neue Methode setzt direkt an den Proteinen an, indem sie deren gezielten und kurzfristigen Abbau ermöglicht – steuerbar mit Licht oder Chemikalien. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Communications.

„Für die Entwicklung dieser Technologie haben wir die zelluläre Müllabfuhr für unsere Zwecke umprogrammiert“, sagt Leonhardt. Defekte oder nicht mehr benötigte Proteine werden in der Zelle mit dem Molekül Ubiquitin verknüpft. Die zelluläre Abbaumaschinerie für Proteine, das Proteasom, erkennt diese Markierung und zerlegt die ausgemusterten Proteine in ihre Einzelteile.

Diesen Mechanismus nutzen die Wissenschaftler, indem sie Ubiquitin mithilfe spezifischer Antikörperfragmente, sogenannter Nanobodies, an die Zielproteine heften – diese also dem zellulären Schredder ausliefern.

Um steuern zu können, ob und wann ein Zielmolekül markiert und abgebaut wird, haben die Wissenschaftler einen zusätzlichen Schalter eingebaut. Erst wenn die Wissenschaftler diesen Schalter durch Licht oder kleine chemische Moleküle aktivieren, wird das Zielmolekül markiert.

„Auf diese Weise können wir gezielt einzelne Proteine zeitlich und räumlich wie mit einem Dimmer stufenlos regulieren, das heißt jede gewünschte Konzentration einstellen und die Auswirkung auf zelluläre Prozesse beobachten“, sagt Leonhardt.

Als eine erste Anwendung untersuchten die Wissenschaftler ein Protein, das bei der DNA-Replikation eine zentrale Rolle spielt und deshalb nicht genetisch ausgeschaltet werden kann. „Wir haben dieses Protein mit unseren Werkzeugen vorübergehend entfernt und konnten so dessen Rolle bei der DNA-Reparatur untersuchen“, sagt Wen Deng, der Erstautor der Studie.

Dabei zeigte sich, dass das Protein eine zentrale Andockstation für andere an der Reparatur beteiligte Proteine darstellt und damit sicherstellt, dass DNA-Schäden in der Zelle effizient repariert werden.

Ein weiterer Vorteil des neuen Werkzeugs ist, dass es auch in ganzen Organismen angewendet werden kann. Im Fadenwurm C. elegans beispielsweise, einem Modellorganismus der Biologie, gelang es den Wissenschaftlern in Kooperation mit der Arbeitsgruppe von Professor Barbara Conradt (University College London), einen wichtigen Schritt des programmierten Zelltods zu untersuchen.

Während der Entwicklung dieses Wurms stirbt bei bestimmten Zellteilungen jeweils eine der zwei Tochterzellen. „Durch den gezielten Abbau des dafür verantwortlichen Exekutionsproteins konnten wir den Tod der Tochterzelle verhindern und so neue Einsichten in diesen Prozess gewinnen“, sagt Leonhardt.

Da das Ubiquitin-Proteasom-System sowohl in allen höheren Organismen als auch in Archaeen und einigen Bakterien existiert, gehen die Wissenschaftler davon aus, dass ihr Instrumentarium zum künstlich gesteuerten Proteinabbau breit einsetzbar sein wird und einen wichtigen Beitrag dazu liefern kann, insbesondere die Funktion von lebenswichtigen Proteinen zu untersuchen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Heinrich Leonhardt
BioSysM
Tel. +49 (0)89 2180-74232
h. leonhardt@lmu.de

Originalpublikation:

Tunable light and drug induced depletion of target proteins
Wen Deng, Jack A. Bates, Hai Wei, Michael D. Bartoschek, Barbara Conradt & Heinrich Leonhardt
Nature Communications 2020
https://www.nature.com/articles/s41467-019-14160-8

Thomas Pinter | Ludwig-Maximilians-Universität München
Weitere Informationen:
https://www.uni-muenchen.de/forschung/news/2020/leonhardt_werkzeug.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektronenbeugung zeigt winzige Kristalle in neuem Licht
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics