Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Projektstart ECO COM'BAT: Nachhaltige Energiespeicherung mit leistungsstarken Hochvoltbatterien

07.03.2017

Für die schnelle Umsetzung der Elektromobilität in Europa ist die Reichweite eine der größten Herausforderungen. Im europäischen Projekt ECO COM'BAT entwickeln deshalb unter der Koordination der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS des Fraunhofer-Instituts für Silicatforschung ISC zehn Partner aus Industrie und Forschung die nächste Generation der Lithium-Ionen-Batterien – die Hochvoltbatterie. Die Hochvoltbatterie soll nicht nur leistungsfähiger, sondern auch in Bezug auf die verwendeten Materialien durch den Ersatz von bisher teuren, seltenen oder gar kritischen Materialien nachhaltiger als herkömmliche Batterien des gleichen Typs sein.

Wegen ihrer hohen Energiedichte und Zuverlässigkeit sind Lithium-Ionen-Batterien aktuell die bevorzugte Energiequelle für elektromobile Fahrzeuge und Konsumergeräte. Doch mit der wachsenden Anzahl an Elektrofahrzeugen und den technologisch immer komplexeren mobilen Endgeräten sind auch die Ansprüche gestiegen. Größere Sicherheit, längere Lebensdauer, höhere Energiedichte und Leistung sowie größere Reichweite sind gefordert.


Effiziente Lithium-Ionen-Pouchzelle und ihre Ausgangsmaterialien.

© K. Selsam-Geißler, Fraunhofer ISC

Ziel des Projekts ECO COM'BAT (»Ecological Composites for High-Efficient Li-Ion Batteries«) ist die Herstellung einer innovativen Hochvoltbatterie, die u. a. die Reichweite von Elektrofahrzeugen erhöht, ein schnelles Laden von Geräten erlaubt und dabei stabiler, leichter und langlebiger sein soll. Darüber hinaus sollen kritische oder wertvolle Rohstoffe, die üblicherweise in herkömmlichen Lithium-Ionen-Batterien verwendet werden, ersetzt werden.

Upscaling im Produktionsmaßstab

Um all dies zu erreichen, verwenden die Projektpartner innovative Materialien: kobaltarmes Lithium-Nickel- Mangan-Kobalt-Oxid – sogenanntes NMC – dient als aktives Material der Elektrode und liefert die erforderliche hohe Energiedichte bei rund 20 Prozent weniger Kobalt als üblich. Als Leitadditiv dient eine Kombination aus Carbon-Nanotubes und porösem Kohlenstoff. Sie verbessert die elektrische Leitfähigkeit der Elektroden und ermöglicht hohe Energiedichten.

Als Elektrolyt wird ein spezieller Hochvoltelektrolyt basierend auf dem Leitsalz Lithium-Bis(fluorosulfonyl)imide (LiFSI) eingesetzt, der auch bei hohen Spannungen stabil betrieben werden kann. Eine ionenleitfähige Beschichtung aus besonderen Hybridpolymeren schützt die Elektrolytmaterialien und sorgt für hohe Sicherheit, Zuverlässigkeit und lange Lebensdauer der Batterie.

Eine erste Aufgabe des Projekts ECO COM'BAT ist die Hochskalierung der Produktionsprozesse, um die innovativen Batteriematerialien im großen Maßstab herstellen zu können. Im nächsten Schritt wird dann die eigentliche Zellproduktion für den industrienahen Pilotmaßstab bis hin zum Produktionsmaßstab hochskaliert. Dabei werden automobile Standardanforderungen ebenso wie energie- und kostengünstige Produktionsmethoden berücksichtigt.

Effizientes, schonendes Recyclingverfahren

Mit der weiteren Verbreitung von Elektrofahrzeugen werden zukünftig auch sehr viel mehr Altbatterien anfallen. Um problematischen Müll zu vermeiden und v. a. die wertvollen Batteriematerialien wie Graphit, Kobalt und Lithium zurückzugewinnen, müssen neue Wege für ein effizientes Recycling gefunden werden. Um eine bestmögliche Wiederverwertung von Rohstoffen und Batteriematerialien zu erreichen, wird bereits bei der Herstellung der Prototypen auf ein recyclinggerechtes Design geachtet. Außerdem sollen innovative Recyclingverfahren erprobt werden.

Projektpartner und Förderung

Das Projekt ECO COM'BAT wird vom Konsortium EIT RawMaterials des Europäischen Instituts for Innovation und Technologie EIT finanziert. EIT RawMaterials, gefördert von der Europäischen Kommission, ist das weltweit größte und stärkste Konsortium im Rohstoffsektor. Seine Vision ist eine Europäische Union, in der Rohstoffe eine große Stärke sind. Aufgabe des Konsortiums ist es, die Wettbewerbsfähigkeit, das Wachstum und die Attraktivität des europäischen Rohstoffsektors durch radikale Innovation und unternehmerische Initiative zu stärken.

Die innovativen Materialien der Hochvoltbatterie liefern insbesondere die Industriepartner Arkema aus Frankreich sowie Umicore aus Belgien und im Fall der Schutzbeschichtung das Fraunhofer ISC. Arkema und das Fraunhofer ISC skalieren die Materialien für den Pilotmaßstab auf, die Elektroden und Zellen fertigen das französische Energieforschungsinstitut CEA, der deutsche Hersteller Custom Cells Itzehoe und das Fraunhofer F&E-Zentrum Elektromobilität Bayern, Teil des ISC, nach Vorgaben des französischen Batterieherstellers Saft.

Die Analyse und Charakterisierung der Materialien, Komponenten und Zellen übernehmen die TU Darmstadt, das spanische Forschungsinsitut CSIC, das italienische Forschungsinstitut ENEA, das Fraunhofer ISC und dessen Projektgruppe IWKS. Die Betriebssimulation führt das flämische Forschungsinstitut VITO durch. Tests zu neuen Recyclingverfahren werden von der Fraunhofer-Projektgruppe IWKS geleitet.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de
http://www.eitrawmaterials.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics