Primäre Zilie wird vererbt

Eine neurale Stammzelle in den Stadien ihrer Zellteilung. In Magenta markiert ist die primäre Zilie zu sehen, das an eine der beiden Tochterzellen vererbt wird. Diese bleibt eine Stammzelle. © MPI f. molekulare Zellbiologie u. Genetik<br>

Zellen besitzen kleine Antennen, mit denen sie Signale aufnehmen können. Die so genannte primäre Zilie ist so ein Sensor-Fortsatz, der in Wirbeltieren in fast allen Zellen vorkommt.

Bisher ging man davon aus, dass die primäre Zilie im Vorfeld einer Zellteilung abgebaut wird, damit die mit der Zilie verankerten Zentrosomen frei werden, eine Teilungsspindel aufzubauen und das Erbgut zu gleichen Teilen auf die beiden Tochterzellen zu verteilen.

Forscher des Dresdner Max-Planck-Instituts für molekulare Zellbiologie und Genetik haben nun in Gehirn-Stammzellen und in kultivierten Zellen gezeigt, dass es ganz anders abläuft: Die Zilie bleibt während der Zellteilung mit einem der beiden Zentrosomen verbunden und wird an eine der entstehenden Tochterzellen vererbt.

Eigentlich war die Entdeckung, wie so oft in der Wissenschaft, ein reines Versehen: „Ich suchte nach etwas anderem, und dann sah ich plötzlich noch Reste der Zilie in der Zelle als Punkt“, erinnert sich Judith Paridaen vom Max-Planck-Institut für molekulare Zellbiologie.

Und das kurz vor einer Zellteilung – nach der gängigen Lehrmeinung müsste sich die Zellantenne aber schon längst abgebaut haben, um die Zellteilungsspindel ungehindert arbeiten zu lassen. Die junge Wissenschaftlerin in der Arbeitsgruppe von Wieland Huttner markierte die Zilie mit einem fluoreszierenden Protein und verfolgte es in allen Stadien der Zellteilung.

„Am Ende war immer noch Membran des Ciliums zu sehen, ich konnte beobachten, dass es an eine der beiden entstehenden Tochterzellen vererbt wurde“, so Paridaen.

Die Tochterzelle, die das Membranvesikel mit den Zilien-Resten erhält, kann dadurch Stammzellcharakter bekommen. Schon nach einer Stunde hat sich dann aus den Membranresten eine neue, funktionierende Zilie herausgeformt. „So hat diese Tochterzelle einen Vorsprung vor der anderen, oder anders gesagt: So entsteht eine asymmetrische Zellteilung“, erklärt Paridaen.

Für die Wissenschaftler sind die Erkenntnisse spektakulär: „Immerhin ist die Zellteilung ein fundamentaler biologischer Vorgang, und unsere Befunde bedeuten, dass dieser anders abläuft als bisher gedacht“, so Wieland Huttner, Direktor am Dresdner Max-Planck-Institut.

Ansprechpartner

Florian Frisch
Pressebeauftragter
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-2840
E-Mail: frisch@­mpi-cbg.de
Prof. Dr. Wieland B. Huttner
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-1500
Fax: +49 351 210-1600
E-Mail: huttner@­mpi-cbg.de
Originalpublikation
Judith Paridaen, Michaela Wilsch-Bräuninger, Wieland Huttner:
Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division

Cell, 10. Oktober 2013

Media Contact

Florian Frisch Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer