Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plastiksackerl, die keine Luft kriegen

01.03.2018

Viele Bioplastiksackerln haben im Müll nichts zu suchen. In sauerstoffarmen Umgebungen wie Biogasanlagen lösen sie sich zu langsam auf und belasten beim Verbrennen des Mülls die Umwelt. Ein Forschungsprojekt am Austrian Centre of Industrial Biotechnology (acib) sucht nun nach Enzymen, die das Plastik schneller auflösen und Emissionen vermeiden. Mit dem Ziel, Plastikberge zu verringern und langfristig herkömmliche Verpackungen durch biobasierte Polymere zu ersetzen.

Die wenigsten wissen es, wir alle tun es. Aber: Bioplastiksackerl haben im Biomüll eigentlich nichts zu suchen. Laut DIN EN 13432 Norm schließt Bioabbaubarkeit mit ein, dass sich ein Material nach einer festgeschriebenen Zeit unter definierten Temperatur-, Sauerstoff- und Feuchtebedingungen in der Anwesenheit von Bakterien oder Pilzen zu mehr als 90 Prozent zu Wasser, CO2 und Biomasse abgebaut haben muss.


Cells coloured

Felmi Graz

Neuerdings landet ein Teil des Biomülls und mit ihm entsorgte Plastiktüten in Biogasanlagen, wo anaerobe Bedingungen (der Ausschluss von Sauerstoff) zu einer Bildung von Biogas als wertvoller Energieträger führen.

"Unter diesen Bedingungen können aus bestimmten Polymerarten gefertigte Sackerln nur langsam abgebaut werden. Sie setzen den Biomüll nicht frei und stören den Prozess erheblich", weiß Doris Ribitsch, Forscherin am Austrian Centre of Industrial Biotechnology (acib).

Gemeinsam mit einer Arbeitsgruppe am Standort Tulln geht sie als erste der Frage nach, ob der Abbau von als bioabbaubar bezeichnetem Plastik – aus dem etwa handelsübliche Biomüllplastiksackerln, Essensverpackungen oder Mulchfolien hergestellt sind – auch in Vergärungsanlagen funktioniert.

Botox im Bioschlamm

Im Vorfeld führten die Forscher In-silico-Recherchen durch. Tausende Einträge einer Enzym-Datenbank wurden durchgesehen, um bestimmte Bakterien zu identifizieren, die spezifische Enzyme zum Plastikabbau produzieren", so Ribitsch. Nach einigen Jahren war es soweit: "Das Bakterium Clostridium botulinum, dessen Proteine auch in Botox enthalten sind, erfüllt sämtliche Voraussetzungen. Es ist sogar in geringen Mengen im Biogas-Schlamm vorhanden", verrät die Biotechnologin.

Damit die Enzyme von Bakterien jedoch großflächig und noch dazu in anaerober Umgebung Plastik abbauen können, ist ein hoher Engineering-Aufwand nötig. In Kooperation mit der ETH Zürich stellte das acib eine optimierte Enzymvariante her, die folglich in eine Biogasversuchsanlage eingebracht wurde. Da bisher keine Informationen zur Verfügung standen, wie Enzyme aus diesen anaeroben Mikroorganismen "arbeiten", wurde ebenso eine Methode geschaffen, mit der sich der Abbauvorgang von Polymeren messen lässt.

Erste Versuche waren vielversprechend: Die im Labor optimierten Enzyme verteilen sich auf der Polymerschicht und kurbeln den Zersetzungsvorgang an. "Wie eine große Schere zerschneiden die Enzyme die langen Polymerketten in immer kürzere Bausteine, bis nur noch Monomere – die kleinsten molekularen Einzelbestandteile – übrig sind, die in weiterer Folge von Mikroorganismen metabolisiert werden können.

Das Ergebnis: Das Plastiksackerl ist zur Gänze aufgelöst und wird zusammen mit dem enthaltenen Biomüll in wertvolles Biogas umgewandelt", erläutert Ribitsch. Bedenkt man, dass etwa zwölf Prozent des weltweit produzierten Plastikmülls ( ca. 45 Mio. Tonnen jährlich) verbrannt werden, könnte der neue Prozess eine Wende im permanenten Abbau von Plastik einleiten. Ein weiterführendes Projekt mit einem Industriepartner steht in den Startlöchern. Zwei Patente wurden bereits angemeldet.

Plastik aus nachwachsenden Quellen

Die neue Methode stellt jedoch lediglich einen Zwischenschritt auf dem umweltbewussten Weg zu einem plastikfreieren Alltag dar: "Solange sich biologisch abbaubare Kunststoffe nicht vernünftig recyceln lassen und einer Wiederverwendung zugeführt werden, ist es immer noch am sinnvollsten, sie zusammen mit biogenen Abfällen in Biogasanlagen einzubringen. Dort kann die freiwerdende Energie zur Erzeugung von Strom, Wärme oder Biomethan herangezogen werden", sagt die Forscherin.

Langfristig sollen die Projektergebnisse dazu beitragen, herkömmliche Verpackungen durch biobasierte Polymere (aus nachwachsenden Rohstoffen) zu ersetzen, die sich in wenigen Tagen selbst auflösen. Der Kohlenstoffkreislauf schlösse sich dadurch, Plastikmüll würde vermieden. Wer sich nun sorgt, dass sich solche Plastiksackerl am Weg vom Einkaufszentrum nach Hause auflösen, sei beruhigt: "Dazu braucht es immer noch die Bedingungen eines Komposthaufens oder einer Biogasanlage", so Ribitsch. Der Einkauf bleibt also intakt. Und, so der Gedanke, die Umwelt ebenso.

Weitere Informationen:

Bildmaterial unter der Nennung der Credits "FELMI Graz" honorarfrei verfügbar unter: https://myshare.acib.at/s/QitiAMYqGcKGEQK

MA Martin Walpot | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics