Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Plätze, Phenylalanin los!

03.05.2013
Ionenkanäle sind wichtige Angriffspunkte zahlreicher Medikamente. Ein junges Forschungsteam unter der Leitung von Anna Stary-Weinzinger, Pharmakologin an der Universität Wien, hat den Öffnungs- und Schließmechanismus dieser Kanäle untersucht: Erstmals sahen WissenschafterInnen einem Protein mit mehr als 400 Aminosäuren bei der Arbeit zu, und sie entdeckten die Schlüsselrolle von Phenylalanin.

Ermöglicht wurde dies durch die Rechenleistung des Vienna Scientific Cluster (VSC), dem schnellsten Computer Österreichs. Ihre Erkenntnisse publizieren sie aktuell in der renommierten Fachzeitschrift PLOS Computational Biology.


Schematische Darstellung des Öffnungs- und Schließmechanismus eines Ionenkanals
Copyright: Anna Stary-Weinzinger

Jede Zelle unseres Körpers grenzt sich von der Umgebung durch eine dünne Membran ab. Um ihre biologischen Funktionen aufrecht zu halten und Signale weiter zu leiten, gibt es in der Membran spezielle Proteine, so genannte Ionenkanäle. Anna Stary-Weinzinger und Tobias Linder von der Universität Wien sowie Bert de Groot vom Max Planck Institut für Biophysikalische Chemie in Göttingen fanden nun heraus, dass beim Öffnungs- und Schließmechanismus von Ionenkanälen der Aminosäure F114 (Phenylalanin) eine wichtige Schlüsselrolle zukommt. Sie dient gewissermaßen als Startsignal für die Öffnungsbewegung von Ionenkanälen.

"Diese Proteine sind hochselektiv für unterschiedliche Ionen wie Natrium, Kalium und Chlorid und ermöglichen je nach Bedarf eine enorme Durchflussrate von bis zu 100 Millionen Ionen pro Sekunde", erklärt Stary-Weinzinger, Leiterin des Forschungsprojekts und Postdoc am Department für Pharmakologie und Toxikologie der Universität Wien. "Diese molekularen Schaltstellen steuern eine Vielzahl von lebenswichtigen Körperfunktionen wie die Weiterleitung von Nervenimpulsen, Regulierung unseres Herzrhythmus und Freisetzung von Neurotransmittern. Bereits leichte Funktionsstörungen der Kanäle, ausgelöst durch den Austausch einer einzigen Aminosäure, können zu schweren Erkrankungen wie Herzrhythmusstörungen, Migräne, Diabetes, bis hin zur Entstehung von Krebs führen."

Neue Medikamente durch Verständnis der Funktionsweise von Ionenkanälen

Ionenkanäle sind wichtige Angriffspunkte zahlreicher Medikamente. Zehn Prozent der eingesetzten Arzneimittel erzielen ihre Wirkung durch Interaktion mit Ionenkanälen. Die Erforschung dieser Proteine hilft festzustellen, ob Medikamente im Körper an der richtigen Stelle wirken bzw. ob bessere Arzneistoffe entwickelt werden können. Als Grundlage der Medikamentenforschung ist zunächst allerdings ein genaues Verständnis der Funktionsweise der Kanäle unerlässlich, denn zur Regulation des Öffnungs- und Schließmechanismus sind noch viele Fragen offen.

Vienna Scientific Cluster zeigt Ionenkanäle in Aktion

Um diesen Proteinen auf atomarer Ebene bei der Arbeit – beim Öffnen und Schließen – zu sehen zu können, sind aufwändige Moleküldynamik-Simulationen am Computer erforderlich. Der für diese Analyse notwendige Rechenaufwand konnte mit Hilfe des Vienna Scientific Cluster (VSC), dem schnellsten Computer Österreichs, der von der Universität Wien, der Technischen Universität Wien und der Universität für Bodenkultur betrieben wird, geleistet werden. Mit Hilfe des VSC war erstmals möglich, für ein großes Protein (> 400 Aminosäuren) die Energielandschaft zwischen offenem und geschlossenem Zustand zu ermitteln. Dabei konnten die WissenschafterInnen zeigen, dass die zwei Zustände von zwei unterschiedlich großen Energiebarrieren getrennt werden.

Phenylalanin dient als Schalter für Zustandsänderungen des Kanals

Die Bewegung einer speziellen Aminosäure, des Phenylalaninrests 114, ist eng an die erste, kleinere Energiebarriere gekoppelt, so die überraschende Entdeckung der Forschungsgruppe. "Dieser Phenylalaninrest dient als Schalter, um den Ionenkanal aus dem geschlossenen Zustand zu entsichern", erklärt Tobias Linder, Doktorand und Forschungsstipendiat der Universität Wien. Erst nach diesen lokal begrenzten Strukturveränderungen ist es dem Kanal möglich, in einer großen "globalen" Bewegung die Pore vollständig zu öffnen. Dieser Übergang vom entsicherten Zwischenzustand zur vollständig geöffneten Pore ist mit einer zweiten, sehr viel größeren Energiebarriere verbunden.

Gefördert wurde diese Arbeit vom FWF-Doktoratskolleg "Molecular Drug Targets" (MolTag), welches von Steffen Hering, Vorstand des Departments für Pharmakologie und Toxikologie der Fakultät für Lebenswissenschaften der Universität Wien, geleitet wird.

Publikation:

T. Linder, BL de Groot, A. Stary-Weinzinger: Probing the energy landscape of activation gating of the bacterial potassium channel KcsA. PLOS Computational Biology, Mai 2013.
DOI: 10.1371/journal.pcbi.1003058

Wissenschaftlicher Kontakt
Mag. Dr. Anna Stary-Weinzinger
Department für Pharmakologie und Toxikologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-553 11
anna.stary@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics