Pionierarbeit: Team der Uni Graz gelingt naturnaher Nachbau von Zellmembranen

Barbara Eicher und Georg Pabst (hier bei einer Röntgenkamera) haben Zellmembranen naturgetreu nachgebaut. Uni Graz/Eklaude

Schon eine einzige Art von Lipiden – also Fettbausteinen – kann eine Zellmembran bilden. Dennoch verwendet die Natur rund tausend verschiedene dafür und ordnet sie in zwei Schichten asymmetrisch an, obwohl die Bestandteile von sich aus immer einen Ausgleich anstreben. Eigene Proteine müssen die Lipide ständig auf die „richtige“ Seite schaufeln.

„Um diesen ungleichen Aufbau aufrecht erhalten zu können, ist sehr viel chemische Energie nötig. Uns treibt die Frage an, warum die Hüllen so komplex gestaltet sind“, schildert Pabst. Bislang war es unmöglich, im Labor asymmetrische Zellmembranen herzustellen. Eine Methode, dank der das funktioniert, hat der Biophysiker nun in Zusammenarbeit mit Grazer KollegInnen sowie ForscherInnen aus den USA, Kanada und Deutschland gefunden.

„Wir haben ein wesentliches Lipid auf die innere Seite der Zellmembran gesetzt und festgestellt, dass in dieser Konstellation die beiden Schichten auch miteinander kommunizieren“, so Pabst. Das ist wichtig, weil einerseits Signale von außen ans Innere der Zelle weitergegeben werden sollen, andererseits auch ein Austausch von Stoffen stattfinden muss – wenn etwa Medikamente an ihr Ziel gelangen sollen.

Mit dem Modell, das nach und nach erweitert werden soll, können ForscherInnen nun die Prozesse an der Zellmembran und die Funktionen der vielen Komponenten untersuchen. „Wir betreten hier völliges wissenschaftliches Neuland“, betont Pabst. Weltweit arbeitet derzeit nur ein knappes Dutzend Personen mit künstlichen asymmetrischen Membranen.

Die Erkenntnisse sind aber für viele Bereiche relevant, allen voran für die Entwicklung von neuen Wirkstoffen für Medikamente, die über Zellmembranen wirken. Das können etwa Mittel gegen Krebs sein oder solche, die die Zellhüllen von krankheitserregenden Bakterien zerstören. „Darüber hinaus könnten unsere Forschungen neue Wege für Drug-Delivery-Systeme auftun oder in fernerer Zukunft sogar technologisch genutzt werden, zum Beispiel für Bio-Sensoren“, führt der Wissenschafter aus.

Kontakt für Rückfragen:
Assoz. Prof. Dr. Georg Pabst
Institut für Molekulare Biowissenschaften der Uni Graz
Tel.: +43/(0)316/380-4989
E-Mail: georg.pabst@uni-graz.at

https://doi.org/10.1016/j.bpj.2017.11.009

Media Contact

Mag. Dagmar Eklaude Karl-Franzens-Universität Graz

Weitere Informationen:

http://www.uni-graz.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer