Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker enträtseln, wie Algen im Mikrokosmos Flüssigkeit vermischen

11.04.2019

Im Mikrokosmos gibt es in Flüssigkeiten keine Wirbel. Aber wie verwirbeln dann winzige Algen das Wasser? Dieser Frage gingen Experimentalphysiker der Universität des Saarlandes aus dem Forscherteam von Professor Christian Wagner auf den Grund. Sie untersuchten, wie sich Flüssigkeiten vermischen, wenn viele kleinste Schwimmer sie durchqueren. Ihr Ergebnis: Nicht die Bewegungen vieler Algen, sondern die einzelner Algen durchmischen das Wasser. Zugleich konnten die Forscher ein Rätsel der Statistik lösen. Dieses Wissen ist wichtig, um im Mikro-Maßstab Flüssigkeiten zu vermengen: so für das „Lab on a Chip“, bei dem eine Laborausrüstung miniaturisiert und auf einem flachen Chip gebündelt wird.

Ihre Ergebnisse veröffentlichen die Wissenschaftler im Fachmagazin Physical Review Letters. Doi: https://doi.org/10.1103/PhysRevLett.122.148101

Algen brauchen Licht. Mit ihm erzeugen sie ihre Energie. Deshalb bleibt auch der einzelligen Alge mit dem klangvollen Namen Chlamydomonas reinhardtii nichts anderes übrig als zu schwimmen. Denn würde die 10 Mikrometer kleine Alge dies nicht tun, würde sie zusammen mit ihren Milliarden von Artgenossen im Phytoplankton langsam, aber sicher auf den Meeresgrund sinken.


Der Weg einer Tracer-Kugel in Wasser ist gekennzeichnet durch eine irreguläre Bewegung, der Brownschen Molekularbewegung. Nur in dem Moment, wenn eine Alge (Foto l.) vorbei schwimmt, erfährt die Kugel einen Kick (siehe Schleife) und das Wasser wird an dieser Stelle stärker durchmischt. Zu allen anderen Zeiten merkt die Kugel nichts von den schwimmenden Algen im Wasser.

(Foto: Levke Ortlieb et al.)

Was äußerst ungünstig wäre: Schließlich produziert das Phytoplankton mehr als die Hälfte des Weltsauerstoffs. Und so schwimmt die Alge mit ihren langen Ärmchen am Kopf, den so genannten Flagellen, immer auf das Licht zu.

Aber was machen ihre Bewegungen mit dem Wasser? Wie verwirbeln sie es? Das wollten Physiker der Universität des Saarlandes genauer wissen. Denn im Mikrokosmos gelten andere Gesetze. In dieser Größenordnung gibt es im Wasser keine Wirbel. Das führt auch dazu, dass es hier größte Probleme bereit, Flüssigkeiten zu vermischen, wie es für das Labor auf dem Chip notwendig ist. Umherschwimmende Algen schaffen es aber, das Wasser gründlich zu durchmengen.

„Hier gilt eine vollkommen andere Physik des Schwimmens. Es ist anders als wir es kennen. Für die Alge ist es eher so, als würde sie sich durch Honig bewegen“, erklärt Thomas John, promovierter Physiker, der im Team von Professor Christian Wagner das Verhalten komplexer Flüssigkeiten erforscht.

Zwar ist die Alge im Wasser erstaunlich flott unterwegs: „Sie erreicht eine Geschwindigkeit von bis zu 70 Mikrometer pro Sekunde. Das entspräche beim Menschen einer Geschwindigkeit von 50 Kilometer pro Stunde“, sagt John. „Würde aber die Alge schwimmen wie ein Mensch, käme sie nicht voran. Menschliche Brustschwimmer nutzen eine Gleitphase ohne Arm- und Beinbewegung aus, um sich effizient fortzubewegen. Endet dagegen der Flagellen-Schlag, stoppt die Alge in einer Millisekunde“, erklärt John.

Das honigartige Verhalten der Flüssigkeiten im Mikrokosmos steckt hinter diesen Schwierigkeiten – und auch hinter dem Misch-Problem: „Rührt man in dieser Größenordnung zwei Flüssigkeiten erst in die eine Richtung, dann in die andere, sind beide getrennt wie zuvor. Um sie zu mischen, braucht es Turbulenzen wie die Bewegungen der Mikroschwimmer“, sagt der Physiker.

Dabei geht es im Mikrokosmos nicht zu wie im Schwimmbad unserer Größenordnung: Während hier das Wasser gründlich bis zum Beckenrand in Wallung gerät, wenn viele oder auch einzelne darin planschen, ist das in der Welt des winzig Kleinen anders.

Die Physiker fanden heraus: Das Wasser verwirbelt hier nicht deshalb, weil eine Unzahl winziger Algen zugleich und beharrlich kleine Schwimmbewegungen vollführt. Das Mischen geschieht vielmehr durch seltenere, aber dafür große Bewegungen einzelner Algen – und zwar nur dort wo diese Alge gerade im „Honig-Wasser“ schwimmt.

Dies haben die Forscher nicht einfach beobachten können. Zu erforschen, wie die Algen das Wasser vermischen, ist ein komplexes Unterfangen. „Die Frage ist nur durch Statistik lösbar“, erklärt der Thomas John. Bislang stießen Forscher dabei auf ein Rätsel: Bisher kamen sie zum Ergebnis, dass die Statistik hier nicht den sonst geltenden Gesetzen einfacher statistischer Systeme folgt.

„Fachlich gesprochen: Auf kurzen Zeitskalen von einer bis zwei Sekunden liegt eine interessante Nicht-Gauß-Statistik vor. Würde sich diese auf längeren Zeitskalen fortsetzen, wäre dies eine Verletzung des zentralen Grenzwertsatzes von Lindeberg-Levy“, erläutert Thomas John.

Die Saarbrücker Physiker konnten jetzt zeigen, dass die Wasserbewegungen durch die Schwimmer auf längeren Zeitskalen doch der bekannten statistischen Physik folgen. Die Studentin Levke Ortlieb untersuchte dies in ihrer Bachelor- und Masterarbeit, die Thomas John betreute. „Ich habe hierzu die Partikel-Verfolgungs-Methode eingesetzt“, erklärt die Physikerin, die inzwischen an der Universität Bristol in Großbritannien forscht.

Hierzu setzte sie kleinste Kügelchen, sogenannte Tracer, der Flüssigkeit zu, in der die Algen schwimmen. Durch die Mikroschwimmer bewegen sich auch die Kügelchen und sie machen so die Bewegungen des Wassers sichtbar. Unter dem Mikroskop verfolgte Ortlieb akribisch die Pfade vieler Tausender Tracer mit Methoden der statistischen Physik.

„Sie konnte die Auswertemethoden experimentell so verbessern und die Statistik derart erweitern, dass sie die Wasserbewegungen durch die Algen über Zeitintervalle von vielen Sekunden eindeutig nachweisen konnte“, sagt Thomas John. Ihr Ergebnis: Die Statistik folgt doch der Gauß-Statistik.

Und gerade diese statistische Auswertung brachte dann des Rätsels Lösung. „Wir wussten nun: Um zu beschreiben, wie Algen das Wasser mischen, brauchen wir ein Modell, das die Bewegung einer einzigen Alge beschreibt“, erklärt Levke Ortlieb. So fanden die Forscher heraus, dass einzelne Mikroschwimmer das Wasser um sie herum vermischen. „Und dadurch bleibt auch der Grenzwert von Lindeberg-Levy erhalten“, ergänzt Thomas John.

Kontakt für die Medien:
Dr. Thomas John: Tel: +49-681-302 3944, E-Mail: thomas.john@physik.uni-saarland.de

Pressefotos für den kostenlosen Gebrauch finden Sie unter https://www.uni-saarland.de/universitaet/aktuell/pm/pressefotos.html. Bitte beachten Sie die Nutzungsbedingungen.

Hinweis für Hörfunk-Journalisten: Telefoninterviews in Studioqualität sind möglich über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Kontakt: 0681/302-2601, oder -64091.

Wissenschaftliche Ansprechpartner:

Dr. Thomas John: Tel: +49-681-302 3944, E-Mail: thomas.john@physik.uni-saarland.de

Originalpublikation:

Ihre Ergebnisse veröffentlichen die Wissenschaftler im Fachmagazin Physical Review Letters.
"Statistics of Colloidal Suspensions Stirred by Microswimmers"
Levke Ortlieb, Salima Rafaï, Philippe Peyla, Christian Wagner, and Thomas John
Phys. Rev. Lett. 122, 148101

https://doi.org/10.1103/PhysRevLett.122.148101

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Berichte zu: Alge Kügelchen Mikroschwimmer Phytoplankton Tracer Wasserbewegungen Zeitskalen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Gene für die Biosynthese des Antidepressivums Hypericin in Johanniskraut entdeckt
06.12.2019 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Goldmedaille: Team der TU Dresden präsentiert DipGene auf der größten Innovationsveranstaltung für Synthetische Biologie
06.12.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Gene für die Biosynthese des Antidepressivums Hypericin in Johanniskraut entdeckt

06.12.2019 | Biowissenschaften Chemie

Goldmedaille: Team der TU Dresden präsentiert DipGene auf der größten Innovationsveranstaltung für Synthetische Biologie

06.12.2019 | Biowissenschaften Chemie

Der Stammbaum der Käfer steht

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics