Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photosynthese stammt aus unverdauten Bakterien

08.09.2017

Die Fähigkeit zur Photosynthese haben höhere Zellen einst bekommen, indem sie sich Cyanobakterien einverleibten und sie zu eigenen Zellorganellen, so genannte Plastiden, umwandelten. Wie dies genau vonstattenging, untersuchte eine Arbeitsgruppe um Dr. Eva Nowack am Department Biologie der Heinrich-Heine-Universität Düsseldorf (HHU) an der Amöbe Paulinella chromatophora. Die Ergebnisse wurden heute in der Fachzeitschrift Current Biology veröffentlicht.

Zellen bedienen sich der Photosynthese, um mithilfe von Sonnenlicht energiereiche Zucker aus energiearmen anorganischen Molekülen herzustellen. Dieser Prozess geschieht in den photosynthetischen Organellen von Pflanzen und Algen, den Plastiden. Diese wiederum entstanden vor mehr als 1,5 Milliarden Jahren, indem eine Wirtszelle ein zur Photosynthese fähiges Cyanobakterium in sich aufnahm. Ähnlich bildeten sich vor rund zwei Milliarden Jahren auch die Mitochondrien, die Kraftwerke der Zelle.


Mikroskopische Aufnahme von Paulinella chromatophora. Die Chromatophoren sind als grüne, wurstförmige Strukturen zu erkennen.

Foto: Anna Singer / HHU

Was geschah vor 1,5 Milliarden Jahren mit dem Cyanobakterium? Offensichtlich verdaute die aufnehmende Zelle das Beutebakterium nicht, sondern erhielt es am Leben und verband sich symbiotisch mit ihm. Dies ging schließlich so weit, dass das Bakterium einen Großteil des eigenen Erbguts verlor und Teile davon in den Zellkern der Wirtszelle transferierte. Die Wirtszelle übernahm es nun, die Information dieser Gene auszulesen und daraus Proteine zu synthetisieren, die in die Plastiden importiert werden und für deren Aufbau und Funktion essentiell sind.

Die Düsseldorfer Biologen um Dr. Eva Nowack rekonstruierten zusammen mit Marburger Kollegen die evolutiven Prozesse, die zur Integration der Plastiden in die Wirtszelle führten. Schwierig war dabei, dass dies schon vor sehr langer Zeit geschah. Ihnen kam aber die Amöbe Paulinella chromatophora zur Hilfe: Denn ihre photosynthetischen Organellen – die so genannten Chromatophoren – bildeten sich erst vor rund 100 Millionen Jahren aus. Die Chromatophoren weisen Eigenschaften auf, die sie als Zwischenstadium zwischen Cyanobakterien und Plastiden charakterisieren.

In einer Veröffentlichung in Current Biology zeigen die Wissenschaftler, dass die Chromatophoren in Paulinella chromatophora trotz ihrer (evolutionär) kürzlichen Integration bereits hunderte Proteine importierten, die im Zellkern der Amöbe kodiert und von ihr synthetisiert werden.

Bei langen (mit mehr als 200 Aminosäurebausteinen) importierten Proteinen – von denen viele Stoffwechselfunktionen ausüben – fanden die Forscher eine wichtige Besonderheit. Sie weisen eine Signalsequenz auf, die sie vermutlich für den Import ins Chromatophor markiert. Diese Sequenz ist quasi der Schlüssel, mit dem die Proteine die Hülle überwinden können, die das Chromatophor vom Rest des Zellinnern trennt.

Das Chromatophoren-Importsignal unterscheidet sich stark von den Signalen, die in Pflanzenzellen den Import von Proteinen in die dortigen Plastiden steuern. Dennoch ist es möglich, mittels des Chromatophoren-Importsignals Proteine auch in Plastiden zu schleusen. Dazu hefteten die Forscher das Chromatophoren-Importsignal an spezielle leuchtende Proteine und stellten fest, dass die so präparierten Proteine von Plastiden in Tabakpflanzen aufgenommen wurden. Dies legt nahe, dass sich der Proteinimportmechanismus in Chromatophoren und in Plastiden gemeinsamer erhalten gebliebener Elemente aus Cyanobakterien und der Wirtszellen bedient.

Dr. Nowack, Leiterin der Emmy Noether-Gruppe „Microbial Symbiosis and Organelle Evolution“ an der HHU, weist auf ein weiteres bemerkenswertes Ergebnis hin: „Die wenigsten Proteine, die in das Chromatophor importiert werden, stammen von dessen cyanobakteriellem Vorgänger. Sie kommen vielmehr größtenteils von der Wirtszelle, teilweise aber auch von anderen ‚Beutebakterien‘."

Proteine aus unterschiedlichen Quellen wurden also während der Etablierung des Chromatophors gemischt. Auch deshalb kann es so schwer sein, den evolutionären Ursprung verschiedener Zellorganellen zu entschlüsseln.

Originalpublikation:

A. Singer, G. Poschmann, C. Mühlich, C. Valadez-Cano, S. Hänsch, V. Hüren, S. A. Rensing, K. Stühler & E. C. M. Nowack, Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora, Current Biology 27, 1–11, September 25, 2017.

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2017.08.010

Carolin Grape | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics