Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenzellen reaktivieren Stammzellen-Programm zur Wundheilung

03.05.2019

Bereits spezialisierte Wurzelzellen ändern Zellteilungsmodus, um zerstörte Nachbarzellen mit korrektem Zelltyp zu ersetzen | Studie in Cell erschienen.

Wird pflanzliches Gewebe verletzt oder zerstört, füllen angrenzende Zellen die Lücke mit ihren Tochterzellen. Welche Zellen sich jedoch teilen, um die Wunde zu heilen und wie sie es schaffen, den korrekten Zelltypus des verletzten Gewebes zu produzieren, war bislang nicht bekannt.


Die unterschiedlichen Zelltypen einer Wurzelspitze teilen sich fortwährend und stammen von einigen wenigen Stammzellen in der Stammzellnische am untersten Ende der Wurzelspitze ab (weiße Zellen).

IST Austria/Lukas Hörmayer

WissenschafterInnen des Institute of Science and Technology Austria (IST Austria) konnten nun zeigen, dass vorwiegend die Nachbarzellen an der Innenseite der Wunde kaputtes Gewebe reparieren, indem sie Stammzellen-ähnliche Eigenschaften annehmen.

Die Gewebe aller pflanzlichen Organe – von den Blättern bis zu den Wurzeln – erleiden regelmäßig Verletzungen, u. a. verursacht durch mechanische Kräfte oder Fressfeinde. Während Tiere bei der Wundheilung auf spezialisierte mobile Zellen setzen können, mussten Pflanzen, deren Zellen nicht mobil sind, andere Mechanismen entwickeln:

Bereits seit mehreren Jahrzehnten ist bekannt, dass an die Wunde angrenzende Zellen verletztes Gewebe durch neu produzierte Tochterzellen ersetzen. Ein komplett neuer Aspekt der pflanzlichen Wundheilung wurde jedoch erst jetzt entdeckt:

Das Forscherteam rund um die ErstautorInnen Petra Marhava, ehemalige PhD-Studentin, Lukas Hörmayer, aktueller PhD-Student und Saiko Yoshida, ehemals Postdoc am IST Austria – alle drei in der Gruppe von Jiří Friml – konnte in der Wurzelspitze einer Pflanze nachweisen, dass verletzte oder zerstörte Zellen nicht einfach durch gesunde Nachbarzellen vom selben Zelltyp oberhalb und unterhalb der Wunde ersetzt werden.

Stattdessen reaktivieren die Zellen der innen anliegenden Gewebeschicht ihr Stammzellen-Programm, um Tochterzellen des korrekten Zelltyps zu produzieren und so die Lücke im Nachbargewebe zu schließen. Die ForscherInnen tauften diesen neu entdeckten, auf „restorative Zellteilung“ basierenden Prozess „restorative Strukturbildung“.

Wenn der Nachbar fehlt: Gewebelücken lösen „restorative Zellteilung“ aus

Mittels eines UV-Lasers entfernten Marhava et al. gezielt einzelne Zellen oder kleine Zellgruppen in der Wurzelspitze der Modellpflanze Arabidopsis thaliana. Mithilfe eines Vertikalmikroskops, das bereits in einem früheren Projekt am IST Austria entwickelt wurde, konnten die ForscherInnen den Wundheilungsprozess am lebenden Objekt und in Echtzeit mitverfolgen.

Dabei beobachteten sie das Phänomen der restorativen Strukturbildung in verschiedensten Gewebeschichten: von der Epidermis über den Cortex und die Endodermis bis zur innersten Schicht perizyklischer Zellen, welche die Gefäße der Wurzelspitze im Zentralzylinder umschließt. In allen diesen Gewebeschichten teilten sich die direkt innen angrenzenden Zellen als Antwort auf eine zerstörte oder fehlende Nachbarzelle.

Anders jedoch als bei der regulären Zellvermehrung lief der Zellzyklus bei dieser Form der Zellteilung signifikant schneller ab. Zudem beobachteten die ForscherInnen eine Drehung der neu gebildeten Zellwand um 90° – nur durch diese Drehung war es den Zellen möglich, sich, anders als beim regulären Längenwachstum, quer zur Wurzelachse anzuordnen.

Identitätswechsel: Tochterzelle von anderem Zelltyp als Mutterzelle

Weiters konnten die ForscherInnen mittels genetischer Markierung zeigen, dass die neu produzierten Zellen die an der Seite der Wunde entstanden, den Zelltyp der zu ersetzenden Zellen annahmen. Galt es zum Beispiel für eine Endodermiszelle eine benachbarte Cortexzelle zu ersetzen, erwarb die Tochterzelle den „richtigen“ Zelltypus einer Cortexzelle. Demnach sind diese „Heilungszellen“ in der Lage, sich asymmetrisch zu teilen, also Tochterzellen unterschiedlichen Zelltyps als jener der Mutterzelle zu produzieren – ein Vorgang, der klassischerweise ausschließlich in der Stammzellnische der Wurzel vorkommt, jener Region, in der Stammzellen spezialisierte Zellen hervorbringen.

Die Wurzeln der Neugier: Jungwissenschafter schaut bei Pflanzenwachstum genauer hin

Wie ein Stammzellen-Programm, also jene Transkriptionsfaktoren und die zugehörigen Gene, welche die restorative Zellteilung inklusive der Drehung der Zellteilungsebene steuern, in bereits spezialisierten Zellen aktiviert wird, ist noch nicht geklärt. Für Lukas Hörmayer jedoch ist die aktuelle Studie erst der Anfang – und das nicht nur, weil es sich hiermit um seine erste Publikation im Rahmen seines PhD-Programms am IST Austria handelt:

„Wir sind davon überzeugt, dass wir durch weitere, insbesondere molekulargenetische Untersuchungen nicht nur Wundheilungsprozesse besser verstehen werden, sondern auch, wie pflanzliche Organe geformt werden bzw. wie ihre Form aufrechterhalten wird.“ Den jungen Wissenschafter, der auf einem Weinbau in Niederösterreich aufgewachsen ist, hat es die Erforschung von Pflanzen angetan: „Das ist zwar ein Blick in die ferne Zukunft, aber allein der Gedanke daran, unser Wissen über die Pflanzenwurzel mit meinen Entdeckungen erweitern zu können, motiviert mich immens, noch genauer hinzuschauen“, so Hörmayer abschließend.

Die Forschungsarbeit zu dieser Studie wurde gefördert vom European Research Council unter dem 7. Rahmenprogramm der Europäischen Union (FP7/2007-2013) / ERC grant agreement n° 742985, einem Marie Curie Fellowship (Vertrag Nr. 753138) sowie einem Long-Term Fellowship der Federation of European Biochemical Societies (FEBS).

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Informatik. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD-StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschafter und vormals Professor an der University of California in Berkeley, USA, sowie der EPFL in Lausanne.

www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Jirí Friml
jiri.friml@ist.ac.at

Originalpublikation:

Petra Marhava, Lukas Hörmayer, Saiko Yoshida, Peter Marhavý, Eva Benková & Jiří Friml. 2019. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. DOI: 10.1016/j.cell.2019.04.015

www.cell.com/cell/fulltext/S0092-8674(19)30401-5 

Weitere Informationen:

https://ist.ac.at/en/research/life-sciences/friml-group/ Webseite der Gruppe

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt
08.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Ins richtige Licht gerückt - Reproduzierbare und nachhaltigere Kupplungsreaktionen
08.07.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing

08.07.2020 | Materialwissenschaften

Graphen: Auf den Belag kommt es an

08.07.2020 | Materialwissenschaften

Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt

08.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics