Pflanzenwurzeln im Dunkeln sehen Licht

Lichtrezeptoren in den Wurzeln werden von Licht aktiviert, das vom Spross über den Stängel in die unterirdischen Wurzeln übertragen wird. Rakesh Santhanam, Angela Overmeyer / Max-Planck-Institut für chemische Ökologie.

Licht ist nicht nur eine Energiequelle, sondern auch ein wichtiges Signal, das viele lichtabhängige Wachstumsvorgänge in der Pflanze steuert, um sie optimal an ihre Umwelt anzupassen. Licht wird zunächst im Spross der Pflanze von Lichtrezeptoren erkannt.

Über Lichtsignalmoleküle werden physiologische Prozesse in der Pflanze reguliert. Schon seit mehr als drei Jahrzehnten wurde darüber spekuliert, ob auch Wurzeln Licht wahrnehmen können. Diese Hypothese konnte aber bis zu dieser neuen Studie nicht belegt werden.

„Physiker aus Korea und Biologen aus Jena haben jetzt das Wissen aus beiden Bereichen kombiniert , um zu untersuchen, ob die Leitgefäße im Spross wie eine Art Faser Licht vom Spross in die Wurzel leiten“, beschreibt Sang-Gyu Kim, einer der Erstautoren der Studie und Mitinitiator des Projekts, die erfolgreiche Kooperation.

Frühere Studien hatten gezeigt, dass ein bestimmter pflanzlicher Lichtrezeptor, der Licht der Wellenlängen rot/infrarot wahrnimmt, erstaunlicherweise auch in den Wurzeln vorkommt. Unklar war allerdings, wie er dort aktiviert wird. In ihrem interdisziplinären Projekt entwickelten nun Molekularbiologen und Spezialisten für angewandte Optik einen hochsensitiven Lichtdetektor sowie die Idee, „blinde“ und „sehende“ Wurzeln zu kreieren.

Die Forscher verwendeten Pflanzen der Ackerschmalwand (Arabidopsis thaliana), einer Modellpflanze in der botanischen Forschung, die genetisch so verändert waren, dass der Lichtrezeptor nur in den Wurzeln außer Kraft gesetzt wurde, nicht aber im Spross. Diese Pflanzen waren also in der Wurzel „blind“. Für die Untersuchungen wuchsen diese Versuchspflanzen zusammen mit Kontrollpflanzen wie in der Natur: mit den Wurzeln im Dunkeln und dem Spross im Licht.

Das optische Detektorsystem wurde eingesetzt, um das Licht zu messen, dass im Stamm hinunter in die Wurzeln übertragen wurde. „Mit diesem Ansatz konnten wir eindeutig zeigen, dass Licht durch die Leitbündel in die Wurzel geleitet wird. Auch wenn die gemessene Intensität sehr gering war, war sie ausreichend, um die Lichtrezeptoren zu aktivieren, eine Lichtsignalkette auszulösen und das Wachstum in den Kontrollpflanzen zu beeinflussen“, erläutert Chung-Mo Park, Leiter des Projekts an der Nationalen Universität in Seoul.

„Diese Ergebnisse sind entscheidend für die weitere Forschung. Unsere Arbeit belegt, dass Wurzeln auch im Boden Licht wahrnehmen können. Dies wiederum aktiviert eine Signalkette, die das Pflanzenwachstum, insbesondere die Wurzelarchitektur, beeinflusst“, sagt Ian Baldwin, Studienleiter am Max-Planck-Institut für chemische Ökologie in Jena. Er blickt bereits in die Zukunft. „In den Wurzeln gibt es noch weitere Lichtrezeptoren. Deren Aufgabe in den Wurzeln und ihr Zusammenspiel mit Lichtsignalen, die aus dem Spross in die Wurzel geleitet werden, ist noch weitgehend unbekannt.“

Von großer Bedeutung für die ökologische Forschung ist es nun, zu zeigen, welche Bedeutung das Ergebnis dieser Studie für Pflanzen hat, die in ihrer natürlichen Umgebung wachsen. Dazu wollen die Forscher Untersuchungen an einer anderen Pflanzenart durchführen, dem Kojotentabak Nicotiana attenuata, einer Modellpflanze der Ökologie, die an extrem starke Lichtverhältnisse angepasst ist. Die Forscher vermuten, dass die neu entdeckte Fähigkeit von Pflanzenwurzeln, Licht wahrzunehmen, entscheidend zur Überlebensfähigkeit von Pflanzen in der Natur beiträgt, indem Energieressourcen für Wachstum, Fortpflanzung und Verteidigung effektiver zugeteilt werden können. [KG/AO]

Originalveröffentlichung:
Lee, H.-J., Ha, J.-H., Kim, S.-G., Choi, H.-K., Kim, Z. H., Han, Y.-J., Kim, J.-I., Oh, Y., Fragoso, V., Shin, K., Hyeon, T., Choi, H.-G., Oh, K.-H., Baldwin, I. T., Park, C.-M. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling. Vol. 9, Issue 452, pp. ra106
http://dx.doi.org/10.1126/scisignal.aaf6530

Weitere Informationen:
Prof. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de
Prof. Chung-Mo Park, Department of Chemistry, Seoul National University, Seoul, Korea 08826, +82 2 880-6640, E-Mail cmpark@snu.ac.kr

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2016.html

http://www.ice.mpg.de/ext/index.php?id=molecular-ecology Abteilung Molekulare Ökologie

Media Contact

Angela Overmeyer Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer