Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

“Pflanzenkino” zeigt den Fluss der Energie

18.07.2017

Ohne Sprit läuft nichts: Auch Pflanzen sind für Wachstum und Entwicklung auf Treibstoff angewiesen. In Lebewesen handelt es sich dabei um den universellen Energieträger Adenosintriphosphat (ATP). Ein internationales Forscherteam unter Federführung der Universität Bonn zeigt an lebenden Keimlingen, wie sich ATP in den unterschiedlichen Pflanzenteilen verhält und welchen Einfluss Stress darauf hat. Die Ergebnisse könnten potenziell Hinweise für die Züchtung resistenterer Sorten geben. Dieses „Pflanzenkino in Echtzeit“ stellt nun das Journal “eLIFE” vor.

Wenn bei einem Auto der Tank leer ist, bewegt es sich keinen Meter mehr. Genauso ergeht es Lebewesen – nur das sie nicht etwa Diesel oder Benzin brauchen, sondern Adenosintriphosphat (ATP). Dabei handelt es sich um ein chemisches Molekül, das universell und unmittelbar Energie bereitstellt. Dieses Prinzip funktioniert bei Menschen, Tieren und Pflanzen gleichermaßen: kein Leben, kein Wachstum, keine Entwicklung ohne ATP.


Die Gewebe eines Keimlings unterscheiden sich im ATP-Gehalt und reichen von hohen (rot) zur niedrigeren Werten (blau).

(c) Stephan Wagner


In der Anzuchtkammer (von links): Dr. Markus Schwarzländer, Valentina De Col und Dr. Stephan Wagner mit Exemplaren der Ackerschmalwand am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz.

(c) Foto: Barbara Frommann/Uni Bonn

„Unsere Arbeit macht diese Energie sichtbar“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn. „Und zwar in lebenden Pflanzen – vom kleinsten Zellorganell bis zum kompletten Keimling“, ergänzt sein Kollege Dr. Stephan Wagner.

Unter Federführung der beiden Biochemiker haben Wissenschaftler aus Deutschland, Italien, China, England und Dänemark einen innovativen Weg entwickelt, ATP im lebenden Organismus mit Hilfe eines fluoreszierenden Proteins sichtbar zu machen.

Hierfür nutzte das Team die Methode von Takeharu Nagai aus Osaka in Japan, mit der ATP an ein fluoreszierendes Protein einer Qualle bindet. Die japanischen Wissenschaftler haben diese Technik ursprünglich in Säugetieren entwickelt, die Forscher der Universität Bonn haben sie nun für die Nutzung an Pflanzen angepasst.

„Mit dieser Technologie wird es möglich, in Echtzeit zu verfolgen, wo wieviel ATP in lebenden Pflanzen vorliegt“, sagt Erstautorin Valentina De Col von der Universität Udine (Italien), die am INRES einen Forschungsaufenthalt im Rahmen ihrer Promotion absolviert hat.

Vom kleinsten Zellorganell bis zur ganzen Pflanze

Der universelle Energieträger ATP gilt als gut erforscht, allerdings handelte es sich bei den bisherigen Untersuchungen weitgehend um Momentaufnahmen. Ganze Pflanzen oder Teile davon wurden pulverisiert und darin die Menge an ATP bestimmt. „Das ist, wie wenn man ein Auto komplett zerlegt und anhand der einzelnen Teile nachvollziehen will, wie es funktioniert“, zieht Schwarzländer einen Vergleich. „Dagegen sieht man mit unserer Technologie der laufenden Maschine bei der Arbeit zu.“

Die „Maschine“ sind Keimlinge der Ackerschmalwand (Arabidopsis thaliana). Die Wissenschaftler untersuchten mit ihrer Methode winzige Arabidopsis-Organellen wie etwa die Zellkraftwerke (Mitochondrien), genauso aber Organe wie Wurzeln oder sogar ganze Keimlinge am Mikroskop und mit einem Fluoreszenz-Analysegerät.

Anhaltspunkte für neue Züchtungen

Das „Pflanzenkino“ zeigte in Echtzeit die Verteilung der Energie. „Bei normaler Versorgung mit Wasser, Luft und Licht liegt in den Wurzeln weniger ATP vor als zum Beispiel in den grünen Blättern“, berichtet Wagner. Offenbar bilden sich an den Stätten der Umwandlung von Sonnenlicht in chemische Energie auch mehr von den Energieträgern. Aber wie reagiert das ATP in Pflanzen unter Stress? Um diese Frage zu beantworten, setzten die Wissenschaftler die leuchtenden Arabidopsis-Keimlinge unter Wasser und schnitten sie damit von der lebenswichtigen Sauerstoffzufuhr ab.

„Dadurch kam die Produktion von ATP nicht sofort zum Erliegen, sondern verringerte sich stufenweise“, berichtet Schwarzländer. Es muss also unterschiedliche Anpassungsprozesse geben, mit der die Pflanze versucht, sich gegen den zunehmenden Sauerstoffmangel zu wappnen und ihren Energiehaushalt aufrecht zu erhalten.

„Eine entscheidende Frage ist nun, ob sich diese Schutzprogramme stimulieren lassen, um neue Pflanzensorten zu züchten, die besser mit Stress zurechtkommen“, verweist Schwarzländer auf die Chancen der neuen Technologie für weitergehende Forschungsarbeiten.

Mit der innovativen Methode ließe sich absehbar zum Beispiel auch untersuchen, wie Krankheitserreger in den Energiehaushalt von Pflanzen eingreifen und wie die Wohngemeinschaft zwischen Wurzeln und bestimmten Pilzen (Mykorrhiza) zum gegenseitigen Nutzen genau funktioniert.

Publikation: ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology, Journal “eLIFE”, Internet: https://doi.org/10.7554/eLife.26770

Kontakt für die Medien:

Dr. Markus Schwarzländer
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Dr. Stephan Wagner
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354267
E-Mail: stephan.wagner@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Zacken in der Viruskrone
07.04.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Auf der Suche nach neuen Antibiotika
07.04.2020 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics