Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenhormon Auxin betätigt einen genetischen Schalter

12.04.2011
Ein Mechanismus zur Stabilisierung der Entwicklung des pflanzlichen Organismus

Bei der Entwicklung von Lebewesen taucht ein Muster immer wieder auf: Ein Signal erscheint vorübergehend, doch die Prozesse, die es anstößt, müssen aufrechterhalten werden – etwa, wenn das Schicksal von Zellen im Embryo festgelegt wird.

Im Pflanzenembryo, bei der Entwicklung der Ackerschmalwand (Arabidopsis thaliana), einer Modellpflanze der Genetik, spielt das Pflanzenhormon Auxin als Signalstoff eine wichtige Rolle. Forscher des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen und der Universität Tübingen kannten bereits wichtige Komponenten in der Zelle, durch die Auxin seinen Einfluss ausübt, und manche ihrer Wechselwirkungen. Nun haben sie einige dieser Komponenten zu einem Regulationsnetzwerk zusammengesetzt: Danach kann Auxin bei steigender Konzentration Gene für die normale Entwicklung des Embryos „anschalten“, die ab einem bestimmten Punkt ihre erhöhte Aktivität auch bei sinkender Auxinkonzentration nicht oder nur verzögert wieder einstellen. Ähnliche Schaltmechanismen sind auch aus dem Tierreich bekannt.

Aus einem Pflanzenembryo soll ein Keimling werden und eine Pflanze mit all ihren Organen: Wurzel, Stängel, Blättern und Blüten. Die Grundlagen für diese Entwicklung werden schon in der frühen Embryonalentwicklung gelegt. Das Pflanzenhormon Auxin greift an verschiedenen Stellen als Signalgeber ein. Es war bereits bekannt, dass es zum Beispiel den Abbau eines Inhibitors, eines hemmend wirkenden Elements, fördert, das bestimmte Faktoren daran hindern kann, ihre Zielgene zu aktivieren. In einer frühen Phase der Entwicklung steigt zunächst die Auxinkonzentration in den oben gelegenen Zellen des Embryos, aus denen sich später die oberirdischen Pflanzenteile bilden. Kurz darauf wird das Auxin in die unteren Zellen transportiert. So kompliziert, so gut. Doch die genaue Rolle des Auxins bei der Musterbildung im Embryo ist damit noch nicht klar.

Steffen Lau, Ive De Smet, Martina Kolb und Gerd Jürgens aus der Abteilung Zellbiologie sowie Hans Meinhardt, alle vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen und teilweise auch an der Universität Tübingen tätig, konzentrierten sich bei der Untersuchung der Auxinwirkung zunächst auf ein vereinfachtes System. Statt an Embryonen der Ackerschmalwand (Arabidopsis thaliana) führten sie ihre Experimente dabei mit Ackerschmalwand-Protoplasten durch, lebenden Zellen ohne Zellwand, die eine weniger komplexe Umgebung bieten. Die Versuchsbedingungen lassen sich bei Protoplasten gezielt variieren, die Genaktivität relativ einfach messen. In diesem System testeten die Wissenschaftler die Wirkungen eines genaktivierenden Faktors, der MONOPTEROS heißt, sowie die seines Inhibitors mit dem Namen BODENLOS. Das Ergebnis dieser und weiterer Experimente: Der Faktor MONOPTEROS fördert sowohl seine eigene Herstellung als auch die seines Inhibitors BODENLOS. Sie bilden ein System zweier miteinander verknüpfter Rückkoppelungsschleifen. Insgesamt werden sie von Auxin kontrolliert, das den Abbau des Inhibitors begünstigt.

Aufbauend auf diesen Ergebnissen haben die Wissenschaftler außerdem Computersimulationen durchgeführt, in denen sie das Regulationsnetzwerk nachgestellt haben. „Alles deutet darauf hin, dass Auxin in dem System sozusagen einen Schalter betätigt“, sagt Steffen Lau. Und das funktioniert so: Bei steigender Auxinkonzentration wird der Inhibitor BODENLOS verstärkt abgebaut, der Faktor MONOPTEROS wird dadurch weniger stark blockiert, und ab einer gewissen Auxinkonzentration wird das MONOPTEROS-BODENLOS-System auf eine höhere Aktivitätsebene gehoben. „Solange in dem angeschalteten System eine bestimmte Auxinkonzentration nicht unterschritten wird, fällt dieses nicht auf das Ausgangsniveau zurück, selbst wenn das meiste Auxin abtransportiert wird“, erklärt der Wissenschaftler.

Dieser Regelungsmechanismus sei bisher bei der Embryonalentwicklung der Pflanzen noch nicht beschrieben worden, ähnele aber beispielsweise einem Signalweg bei embryonalen Stammzellen der Wirbeltiere. „Ob sich dieser Regelungstyp an weiteren Stellen in der Entwicklung der Ackerschmalwand findet, müsste noch untersucht werden“, sagt Steffen Lau.

Ansprechpartner
Prof. Dr. Gerd Jürgens
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Originalveröffentlichung
Steffen Lau, Ive De Smet, Martina Kolb, Hans Meinhardt, Gerd Jürgens
Auxin triggers a genetic switch
Nature Cell Biology, 10. April 2011, doi: 10.1038/ncb2212

Prof. Dr. Gerd Jürgens | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1362017/auxin_reguliert_gene

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics