Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Pflanze ihre erste Wurzel bildet

11.03.2010
Tübinger Entwicklungsgenetiker erforschen Musterbildung im Embryo - Veröffentlichung in 'Nature'

Die Wurzel und andere Grundorgane der ausgewachsenen Pflanze werden bereits im Embryo angelegt. Dafür muss sich schon im winzigen Zellknäuel die Identität der Zellen herausbilden. In der Pflanzenentwicklung hängt die Übernahme bestimmter Aufgaben einer Zelle eng mit den Informationen zusammen, die sie über ihre Position im Zellverband hat.

Die Entwicklungsgenetiker Dr. Alexandra Schlereth, Marika Kientz und Prof. Gerd Jürgens vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen haben an der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) erforscht, wie sich bei der Entwicklung des Embryos das erste Wurzelgewebe herausbildet. Die Forschungsarbeit, die von der Fachzeitschrift Nature am 10. März 2010 vorab online veröffentlicht wurde, entstand in Zusammenarbeit mit Prof. Dolf Weijers (zuvor ebenfalls am ZMBP) und seiner Gruppe an der Universität Wageningen, sowie Dr. Markus Schmid vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen. Mit der Erforschung solch hochkomplizierter, aber sehr grundlegender Vorgänge in Pflanzen wird die Basis für viele weitere Forschungsarbeiten auch in der anwendungsorientierten Entwicklung geschaffen.

Im Samen der Ackerschmalwand bildet sich der Embryo aus der befruchten Eizelle heraus, die sich zunächst in zwei Tochterzellen teilt. Dabei entsteht beinahe der gesamte Embryo aus einer der beiden Tochterzellen, während die andere ein Verbindungsgewebe hervorbringt, das den Embryo im Nährgewebe verankert. Erst wenn der Embryo zu einem kleinen Zellknäuel herangewachsen ist, wird die an den Embryo angrenzende Zelle des Verbindungsgewebes durch aktivierende Signale vom Embryo dazu gebracht, Teil des Embryos zu werden und das Wurzelgewebe zu gründen. Die Wissenschaftler haben diese Abläufe unter der Leitung von Prof. Gerd Jürgens im Detail untersucht und konnten etliche der Mitspieler im komplizierten Regulierungsgeflecht identifizieren.

Die Ausbildung des Wurzelgewebes hängt zum einen von der Anhäufung des Pflanzenhormons Auxin ab, das verstärkt von dem Steuerungsfaktor Monopteros vom Embryo zur Wurzelgründungszelle gelenkt wird. Doch das reicht nicht aus. Die Forscher folgerten, dass Monopteros gezielt weitere Gene aktivieren muss. Bei einer umfassenden Erhebung aller von Monopteros aktivierten Gene fanden sie vier Gene, die bereits während der Embryonalentwicklung eine Rolle spielen. Zwei davon, TMO5 und TMO7 (TMO = Target of MOnopteros), erwiesen sich in weiteren Tests als notwendig für die Ausbildung des Wurzelgewebes. Das vom TMO7-Gen gebildete Protein muss dazu vom Ort seines Entstehens im Embryo in die Wurzelgründungszelle wandern. Es stellt somit ein bisher noch nicht bekanntes interzelluläres Signal bei der Wurzelbildung des Embryos dar. Die detektivische Suche im Genetiklabor der Pflanzenforscher wird damit nicht beendet sein. Denn TMO7 ist wiederum ein Steuerungsfaktor, der in weitere Regulierungsgeflechte der Pflanzenentwicklung eingebunden ist.

Weitere Informationen:

Die Veröffentlichung: Alexandra Schlereth, Barbara Möller, Weilin Liu, Marika Kientz, Jacky Flipse, Eike H. Rademacher, Markus Schmid, Gerd Jürgens und Dolf Weijers: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, Online-Publikation vorab am 10. März 2010, doi 10.1038/nature08836.

Prof. Gerd Jürgens
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Entwicklungsgenetik
Auf der Morgenstelle 3
72076 Tübingen
T. 0 70 71/29-7 88 87
E-Mail: gerd.juergens [at] zmbp.uni-tuebingen.de
Eberhard Karls Universität Tübingen
Hochschulkommunikation
Abteilung Presse und Forschungsberichterstattung
Michael Seifert
Wilhelmstr. 5 · 72074 Tübingen
Tel.: 0 70 71 · 29 · 7 67 89 · Fax: 0 70 71 · 29 · 5566
E-Mail: michael.seifert[at]uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroben können auf Stickstoffmonoxid (NO) wachsen
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Oszillation im Muskelgewebe
18.03.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Test der Symmetrie der Raumzeit mit Atomuhren

Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativitätstheorie - Nature-Veröffentlichung

Einstein formulierte in seiner Speziellen Relativitätstheorie die These, die Lichtgeschwindigkeit sei immer und unter allen Bedingungen gleich. Doch diese...

Im Focus: Energieeffizientes Supraleiterkabel für Zukunftstechnologien

Ob für die Anbindung von Windparks, für die Gleichstromversorgung auf Schiffen oder sogar für leichte und kompakte Hochstromleitungen in künftigen vollelektrischen Flugzeugen: Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben ein vielseitiges Supraleiterkabel entwickelt, das auf einfache Weise industriell gefertigt werden kann. Bei moderater Kühlung transportiert es elektrische Energie nahezu verlustfrei.

Supraleiter übertragen elektrischen Strom bei tiefen Temperaturen nahezu verlustfrei – das macht sie für eine ganze Reihe energiesparender Technologien...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

18. Fachtagung zu Rapid Prototyping

13.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der virtuelle Graue Star

18.03.2019 | Informationstechnologie

Objekt­erkennung für innovative Logistiksysteme

18.03.2019 | Verkehr Logistik

Forscher entwickeln Roboterarme biegsam wie Elefantenrüssel: für große Greifer und kleine Endoskope

18.03.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics