Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pfade ausleuchten im Fischgehirn

24.07.2017

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben mit “Optobow” eine Methode entwickelt, die es ermöglicht, allein mittels Licht miteinander verbundene Nervenzellen im lebenden Gehirn zu entdecken. Mit der nun in "Nature Communications" publizierten Optobow-Methode können einzelne Nervenzellen unter dem Mikroskop aktiviert werden; das Aufleuchten benachbarter Zellen zeigt dann den Weg des Informationsflusses. Selbst im Dickicht des Nervensystems werden Form und Verbindungen der Zellen sichtbar. Funktionelle Schaltkreise und die beteiligten Zelltypen können nun im lebenden Gehirn untersucht werden.

Moderne Methoden geben immer detailliertere Einblicke in den Aufbau und die Funktionen des Gehirns. Durch das Mikroskop zeigt sich, wann und wo Nervenzellen bei einer bestimmten Aktion aktiv sind. Ob die aktiven Zellen jedoch untereinander verbunden sind, oder in welcher Reihenfolge sie Informationen austauschen, bleibt dabei meist unsichtbar. Solche Informationen konnten bisher nur teilweise und mit großem Aufwand mit Methoden der Elektrophysiologie oder der Elektronenmikroskopie gewonnen werden.


Forscher können einzelne Nervenzellen im Zebrafischgehirn mit Licht aktivieren (magenta) und beobachten, welche benachbarten Zellen mit der Zelle im gleichen Schaltkreis verbunden sind (gelb).

© Max-Planck-Institut für Neurobiologie / Förster

In der Elektrophysiologie wird die Aktivität benachbarter Zellen mit Hilfe hauchdünner Nadeln gemessen. Dies ist jedoch in sehr dichtem oder tiefem Hirngewebe kaum möglich und lange Verbindungswege können nur schwierig nachvollzogen werden. Zudem können nur Impulse von wenigen Zellen gleichzeitig gemessen werden.

Bei modernen Elektronenmikroskopie-Verfahren (Konnektomik) werden in einem präparierten Gehirn alle Nervenzellen und ihre Verbindungen Schicht für Schicht von einem Rasterelektronenmikroskop erfasst und dann am Computer rekonstruiert. So werden zwar Zellverbindungen sichtbar, die dynamische Informationsweitergabe eines lebenden Gehirns bleibt dabei jedoch verborgen.

Beide Ansätze haben somit deutliche Limitierungen. „Wir haben nach einem Weg gesucht, um die Verbindungen und Informationsweitergabe von Nervenzellen im aktiven Gehirn beobachten zu können, ohne das Gehirn zu schädigen, ja, es nicht einmal zu berühren“, erklärt Dominique Förster. Mit dieser Motivation entwickelten Förster und seine Kollegen aus der Abteilung von Herwig Baier am Max-Planck-Institut für Neurobiologie die Optobow-Methode.

Farbmarkierungen für aktive Zellen

Mit Hilfe gentechnischer Verfahren schleusten die Forscher den lichtempfindlichen "ChrimsonR"-Ionenkanal in einzelne Nervenzellen im Gehirn von Zebrafischlarven ein. Die Nervenzellen in der Umgebung dieser ChrimsonR-Zellen brachten die Wissenschaftler dazu, "GCaMP6", einen sogenannten Kalzium-Indikator, zu produzieren. An GCaMP6 gekoppelt war wiederum ein hellfluoreszierendes Protein, mit dem die Forscher die Form der Nervenzelle einschließlich ihrer feinen Verästelungen und Synapsen sichtbar machen konnten.

„Das klingt erst einmal kompliziert, und die Entwicklung hat auch einiges an Zeit gekostet – aber das Ergebnis ist beeindruckend“, freut sich Dominique Förster über die neue Methode. Da Zebrafischlarven und auch ihr Gehirn durchsichtig sind, konnten die Max-Planck-Forscher die ChrimsonR-Zellen allein durch das Anstrahlen der Fische mit Licht aktivieren. Dass das Licht dabei gezielt auf einzelne Nervenzellen auch tief im Gehirn traf, war erst durch eine fast zeitgleich von Labor-Kollegen entwickelte zweite Methode möglich. (Mehr über diese Zwei-Photonen holographische Optogenetik findet sich über den Link am Ende des Textes.)

Die Forscher konnten somit einzelne ChrimsonR-Zellen im lebenden Fischgehirn durch Licht aktivieren. Löste die ChrimsonR-Zelle ein Aktionspotential in einer Nachbarzelle aus, reagierte dort der Kalzium-Indikator auf den damit verbundenen Ionen-Einstrom und das fluoreszierende Protein ließ die Zelle farblich aus der Masse hervortreten. So konnten die Wissenschaftler live unter dem Mikroskop beobachten, welche Nervenzelltypen wann und wo nach Aktivierung der Ausgangszelle aktiviert wurden.

Neue Methode mit großem Potential

Wie nützlich die neue Methode ist, konnten die Forscher bereits in ihren ersten Versuchen belegen: Im untersuchten Bereich des Zebrafischgehirns konnten sie zeigen, dass eine Information als Abbild in dem Gehirnbereich bleibt, bevor sie an andere Bereiche weitergeleitet wird. „Ich wüsste nicht, mit welcher anderen lichtmikroskopischen Methode wir diese Verbindung hätten entdecken können“, freut sich auch Herwig Baier, der Leiter der Studie.

„Mit Optobow können wir nun erstmals im Gehirn eines lebenden, aktiven Tiers beobachten, welche Nervenzellen untereinander verschaltet sind, wenn zum Beispiel ein Verhaltenskommando im Gehirn generiert wird.“ Optobow sollte das Identifizieren der zellulären Komponenten neuronaler Schaltkreise und auch das Verständnis ihrer Funktion deutlich vorantreiben und dadurch Elektrophysiologie und Konnektomik ergänzen. Auch dynamische Veränderungen in den Zellverbindungen, wie zum Beispiel während des Lernens und der Entwicklung, können nun leichter erforscht werden.

ORIGINALVERÖFFENTLICHUNG
Dominique Förster, Marco Dal Maschio, Eva Laurell, Herwig Baier
An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits
Nature Communications, online am 24. Juli 2017

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Prof. Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie breitet sich der Kalikokrebs aus?
25.06.2018 | Pädagogische Hochschule Karlsruhe

nachricht Brücken bauen mit Wassermolekülen
25.06.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wendelstein 7-X erreicht Weltrekord

Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung für Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der...

Im Focus: Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

Bei der Entwicklung innovativer Superrechner-Architekturen ist Europa dabei, die Führung zu übernehmen. Leuchtendes Beispiel hierfür ist der neue Höchstleistungsrechner, der in diesen Tagen am Jülicher Supercomputing Centre (JSC) an den Start geht. JUWELS ist ein Meilenstein hin zu einer neuen Generation von hochflexiblen modularen Supercomputern, die auf ein erweitertes Aufgabenspektrum abzielen – von Big-Data-Anwendungen bis hin zu rechenaufwändigen Simulationen. Allein mit seinem ersten Modul qualifizierte er sich als Nummer 1 der deutschen Rechner für die TOP500-Liste der schnellsten Computer der Welt, die heute erschienen ist.

Das System wird im Rahmen des von Bund und Sitzländern getragenen Gauß Centre for Supercomputing finanziert und eingesetzt.

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wendelstein 7-X erreicht Weltrekord

25.06.2018 | Physik Astronomie

Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

25.06.2018 | Informationstechnologie

Leuchtfeuer in der Produktion

25.06.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics