Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnervermittlung mit Konsequenzen

17.10.2017

Wenn Zellen entarten, spielen Myc-Proteine eine wichtige Rolle. Wie diese dabei vorgehen, haben Forscher der Uni Würzburg untersucht. Sie eröffnen damit möglicherweise Wege zur Entwicklung neuer Therapien.

Den meisten Tumoren des Menschen ist eines gemeinsam: In ihnen finden sich drastisch erhöhte Mengen an sogenannten Myc-Proteinen. Tierversuche zeigen, dass solch hohe Myc-Mengen ursächlich zur Entstehung von Krebs beitragen.


Die roten Punkte im rechten Bild zeigen, wo Myc und PAF1 aneinander binden. Dies geschieht vor allem in Zellkernen (blau). In Kontrollkernen ist keine spezifische Interaktion sichtbar.

AG Gallant

Myc-Proteine besitzen aber nicht nur schädliche Eigenschaften, sondern spielen auch in gesunden Zellen eine wichtige Rolle: Sie funktionieren als sogenannte „Transkriptionsfaktoren“ und steuern die Aktivität einer beschränkten Zahl von Genen. Viele dieser von Myc aktivierten Gene werden gebraucht für das Wachstum und die Vermehrung von normalen Zellen, so dass Myc essentiell ist für die normale Entwicklung des Menschen.

Wie Myc-Proteine in Tumorzellen arbeiten, war im Einzelnen bislang unklar. Wissenschaftler vom Biozentrum der Universität Würzburg haben jetzt wichtige Details dieser Vorgänge entschlüsselt. Verantwortlich dafür ist Dr. Peter Gallant, Gruppenleiter am Lehrstuhl für Biochemie und Molekularbiologie. Ihre Arbeit stellen die Forscher in der jüngsten Ausgabe der Fachzeitschrift PNAS - Proceedings of the National Academy of Sciences vor.

Zu viel Myc führt zur Entartung

„Myc-Proteine binden an ihre Zielgene über molekular gut beschriebene Wechselwirkungen, die typischerweise eine genau definierte Abfolge von Nukleotiden beinhalten“, schildert Peter Gallant die Grundlagen seiner Studie. Treten Myc-Proteine allerdings in deutlich erhöhten Mengen auf, haften sie sich an praktisch alle aktiven Gene und verstärken dadurch die Aktivität dieser Gene weiter – was dann zur Entartung der betroffenen Zelle beiträgt.

„Eine solches Verhalten ist äußerst ungewöhnlich für Transkriptionsfaktoren und molekular bislang nicht erklärbar“, so der Biochemiker. Die Frage, wie ein Transkriptionsfaktor, der eigentlich nur kurze, definierte Nukleotid-Abfolgen erkennt, an alle Gene binden kann – auch an solche, die diese Nukleotid-Abfolge gar nicht enthalten – habe die Wissenschaft bislang vor Rätsel gestellt.

Ein Enzym dient als Vermittler

Eine Erklärung fanden die Forscher, als sie ihren Blick auf andere Proteine richteten, die ebenfalls an alle Gene binden – in diesem Fall auf Enzyme, welche alle Gene ablesen und in RNA übersetzen: RNA-Polymerasen sowie die assoziierten Hilfsproteine, die für die Aktivität der Polymerasen wichtig sind. Darunter auch der aus fünf Proteinen bestehende „Polymerase Associated Factor 1“-Komplex, kurz PAF1-Komplex genannt. Dort fanden Gallant und sein Team eine Antwort auf ihre Fragen zu Mycs ungewöhnlichem Verhalten.

Die Forscher verwendeten Taufliegen (Drosophila melanogaster) als Modellsystem für ihre Untersuchungen. „In diesen Tieren funktionieren Myc-Proteine sehr ähnlich wie in Säugern, aber die entsprechenden Experimente lassen sich hier leichter und effizienter durchführen“, erklärt Gallant. In einem genetischen Screen fanden sie, dass der PAF1-Komplex wichtig ist für die Aktivität von Myc – insbesondere für Mycs Fähigkeit, bestimmte Zielgene zu aktivieren und das Zellwachstum zu stimulieren.

Weiterführende biochemische und molekularbiologische Analysen, darunter auch Genom-weite Sequenzanalysen – das sogenannte „Next Generation Sequencing“ – erhellten dann die Wirkungsweise des PAF1-Komplexes: Als „Polymerase-assoziierter Faktor“ sitzt dieser Komplex an praktisch allen aktiven Genen. Gleichzeitig ist er in der Lage, an das Myc-Protein zu binden. „Dadurch werden Myc-Proteine zu aktiven Genen rekrutiert und können deren Aktivität weiter in die Höhe treiben“, erklärt Gallant. Vor allem bei erhöhten Myc-Mengen scheint diese Stimulierung von Bedeutung zu sein.

Weitere Faktoren mit im Spiel

In ihren Experimenten konnten die Forscher zeigen, dass die Zerstörung des PAF1-Komplexes die Bindung der Myc-Proteine an ihre Zielgene deutlich schwächt – diese aber nicht vollständig eliminiert. „Das weist darauf hin, dass es noch weitere Faktoren gibt, die ähnlich wie der PAF1-Komplex bei der Rekrutierung von Myc helfen“, so Gallant. In der Tat sei vor Kurzem an weiteres Protein identifiziert worden, das ähnlich allgemeine Funktionen beim Ablesen von Genen hat wie der PAF1-Komplex und das gleichzeitig auch an Myc bindet und dieses Protein an viele Gene rekrutiert.

Die Wissenschaftler vermuten deshalb jetzt, dass es noch weitere solcher allgemeinen Faktoren gibt, die zur Bindung von Myc an alle Gene beitragen, und die insbesondere bei abnormal erhöhten Myc-Mengen wichtig sind.

Neuer Ansatz für Medikamentenentwicklung

Ihre neuen Erkenntnisse sind nach Ansicht der Würzburger Wissenschaftler nicht nur für die Biochemie von Bedeutung, sondern auch für die Medizin, da Myc-Proteine eine wichtige Rolle bei der Entstehung von Krebs spielen. „Bisher war es nicht möglich, Medikamente zu entwickeln, welche die Aktivität von Myc-Proteinen spezifisch hemmen“, so Gallant. Die neu gefundenen Interaktionen eröffneten nun aber potentiell neue Ansatzpunkte für die Entwicklung von Medikamenten, die Myc gezielt blockieren.

PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Jennifer Gerlach, Michael Furrer, Maria Gallant, Dirk Birkel, Apoorva Baluapuri, Elmar Wolf, Peter Gallant. PNAS Early Edition, published online October 16. www.pnas.org/cgi/doi/10.1073/pnas.1705816114

Kontakt

Dr. Peter Gallant, Lehrstuhl für Biochemie und Molekularbiologie
T: +49 931 31-88814, peter.gallant@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

nachricht Tiefseebakterien ernähren sich wie ihre Nachbarn
19.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics