Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partikel fangen mit Ultraschall

12.05.2017

Wie kann man lebende Zellen in einer Flüssigkeit festhalten um sie zu untersuchen? Am besten mit stehenden Ultraschallwellen. Die TU Wien präsentiert auf der Messe „Labvolution“ erstmals dem interessierten Fachpublikum zwei kleine Add-On-Geräte, die bestehende Sensor-Messsysteme deutlich verbessern.

Immer häufiger werden Mikroorganismen industriell eingesetzt, um chemische Stoffe zu synthetisieren. Um genau überwachen zu können, ob die Kleinstlebewesen ihre Arbeit auch tatsächlich ordnungsgemäß erledigen, muss man sie zunächst an der richtigen Stelle festhalten.


Das Ultraschallgerät zum Festhalten und Untersuchen lebender Zellen

TU Wien

Das gelingt mit Hilfe einer Ultraschalltechnik, die an der TU Wien entwickelt wurde. Bei der internationalen Biotechnik- und Labormesse „Labvolution“ in Hannover stellt das Team der TU Wien nun die neue Technologie vor, die sich als einfache Add-Ons mit einer bestehenden Process Analytical Technology (PAT) kombinieren lassen.

Infrarot und Ultraschall

Die Bioreaktoren, in denen man Mikroorganismen industriell einsetzt, sind alles andere als eine ruhige Umgebung zum vorsichtigen Experimentieren: „Die Mikroorganismen befinden sich in einer Flüssigkeit, die ständig gerührt wird. Eine direkte Analyse der Mikroorganismen ist oft schwierig“, erklärt Prof. Bernhard Lendl vom Institut für Chemische Technologien und Analytik der TU Wien. „Eine Möglichkeit ist die ATR-Spektroskopie, bei der man die Mikroorganismen mit Infrarot-Licht analysiert.“

Das gelingt aber nur dann, wenn man die Mikroorganismen nahe am Infrarot-Messgerät festhält und gleichzeitig verhindert, dass sie an der Sonde des Messgerätes festkleben. Genau das wird nun mit Hilfe der Ultraschall-Technologie möglich, die Prof. Bernhard Lendl gemeinsam mit Dr. Stefan Radel aus der Forschungsgruppe von Prof. Ewald Benes an der TU Wien entwickelte.

Zwischen einem Ultraschall-Lautsprecher und einem Reflektor wird direkt im Bioreaktor eine stehende Schallwelle erzeugt. Dort, wo sich Wellenberge befinden, ändert sich der Schalldruck Millionen mal pro Sekunde – dadurch werden die Zellen aus diesen Bereichen weggedrückt. An den Knotenpunkten hingegen bleibt der Schalldruck konstant, und genau dort sammeln sich die Zellen an.

Genauer, einfacher, flexibler

Das bietet eine ganze Reihe von Vorteilen: Man kann die Schallwellen des etwa zigarrengroßen Gerätes „Sonic-catch“ dazu verwenden, gezielt biologische Partikel im Messbereich anzulagern oder aber fern zu halten. Man kann so entweder die Mikroorganismen selbst untersuchen, oder stattdessen die wässrige Lösung analysieren, in der sie sich befinden.

Selbst lebende Zellen werden durch den Ultraschall nicht geschädigt – der Prozessablauf wird durch die Messtechnik also nicht gestört. Durch gezielte kurze Ultraschall-Pulse kann „Sonic-wipe“ die Sonde des Infrarot-Messgerätes bei Bedarf reinigen, ohne dass man sie aus der Bio-Lösung herausnehmen oder mit zusätzlichen Chemikalien behandeln müsste.

„Die Ultraschall-Technik ermöglicht eine erhöhte Messgenauigkeit, eine höhere Empfindlichkeit bei geringeren Teilchenkonzentrationen und Echtzeitmessungen und somit gezielte Prozesssteuerung, selbst bei schwierigen Bedingungen. Bei einem häufig eingesetzten Messverfahren haben wir eine Erhöhung der Empfindlichkeit um den Faktor 100 festgestellt“, sagt Dr. Stefan Radel.

Neben dieser Innovation werden auf der Labvolution/ Biotechnica (von 16. bis 18.5. in Hannover) von der TU Wien zwei weitere Weltneuheiten auf dem Gemeinschaftsstand „Forschung für die Zukunft“ in Halle 19/20 – Stand C66 vorgestellt:

- „Hot & Sour – die Bioraffinerie der Zukunft“ vereint die Vorteile von Ganzzellen mit enzymatischen und chemischen Katalysatoren in einem einstufigen Hybrid-Bioprozess. Dieses Verfahren ermöglicht die Gewinnung wertvoller Produkte aus organischen Abfallströmen zu wirtschaftlich profitablen Bedingungen.

- Der erste Bio-Chip für Wundheilung: Neueste „Lab-on-a-Chip“-Technologien der TU Wien ermöglichen individualisierte biomedizinische Diagnostik und Therapie, welche die körperlichen Parameter der Einzelperson berücksichtigen und nicht mehr auf Wirksamkeitsprognosen von Medikamenten angewiesen sind, die auf stark nivellierenden statistischen Mittelwerten beruhen.

Rückfragehinweise:

Zu wissenschaftlichen Fragen:

Prof. Bernhard Lendl
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-15140
bernhard.lendl@tuwien.ac.at

Zum Auftritt der TU Wien bei der Labvolution/Biotechnica 2017:
Dipl.-Ing. Peter Heimerl
Stabsstelle Forschungsmarketing
Technische Universität Wien
Karlsplatz 13, 1040 Wien
T: +43-1-58801-406110
M: +43-664-605883320
forschungsmarketing@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bienen brauchen es bunt
20.08.2018 | Julius-Maximilians-Universität Würzburg

nachricht Künstliche Enzyme aus DNA
20.08.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics