Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parkinson und die Inspekteure der Nervenzellen

29.06.2012
Zwischen der Parkinson-Krankheit und dem Enzym „Pink1“ wird schon seit Längerem ein Zusammenhang vermutet.

Biochemiker der Universität Bonn haben nun mit ihren Kollegen von der Columbia University in New York (USA) die Ursachen entschlüsselt. „Pink1“ fungiert als eine Art Kontrolleur, der die Kraftwerke in den Nervenzellen prüft.

Fällt dieser Inspekteur aus, gerät auch die Energieversorgung der Zellen in Gefahr. Die Ergebnisse sind im Journal of Biological Chemistry (Cell Biology and Neurobiology) veröffentlicht, dessen Druckfassung nun vorliegt.

Im Verlauf der Parkinson-Krankheit sterben allmählich Dopamin-produzierende Nervenzellen in einem bestimmten Gehirnbereich ab. Der Mangel an dem Botenstoff führt schließlich zu den typischen Symptomen der Erkrankung, allen voran dem Muskelzittern. Bereits im Jahr 2004 wurde entdeckt, dass das Enzym „Pink1“ mit der Parkinson-Krankheit in Zusammenhang steht. Enzyme sind Eiweiße (Proteine), die als Biokatalysatoren bestimmte Stoffwechselvorgänge ermöglichen.

„Bei `Pink1´ handelt es sich um ein besonderes Protein, das sich an den Mitochondrien befindet und gleichzeitig an Signalübertragungen im Cytoplasma beteiligt ist“, berichtet Prof. Dr. Wolfgang Voos vom Institut für Biochemie und Molekularbiologie der Universität Bonn. Die Mitochondrien sind die „Kraftwerke“, die für die lebende Zelle die notwendige Energie bereitstellen.

Exotischer Transportweg von Pink1

„Die Frage war nun, wo genau Pink1 an den Mitochondrien sitzt und wie es dahin kommt“, sagt der Biochemiker Prof. Voos. Die Forscher der Universität Bonn und der Columbia University in New York (USA) isolierten Mitochondrien aus kultivierten menschlichen Zellen und markierten das Enzym Pink1 mit einem radioaktivem Schwefelisotop. „Damit waren wir in der Lage, den sehr exotischen Transportweg im Detail aufzuklären, den Pink1 von seiner Synthese im Cytoplasma zu seinem endgültigen Wirkungsort im Mitochondrium nimmt“, berichtet der Bonner Biochemiker. Das Protein Pink1 besitzt mehrere verschiedene Teile, die wie Schlüssel zu unterschiedlichen Schlössern, repräsentiert durch bestimmte mitochondriale Proteine, passen. Je nach Stabilität beziehungsweise Energiezustand des jeweiligen Mitochondriums verläuft das Einschleusen von Pink1 über unterschiedliche Wege. Interessanterweise sitzen im Endeffekt trotz der Unterschiede alle Pink1-Moleküle direkt auf der Oberfläche der Mitochondrien und stehen damit in direktem Kontakt zu anderen Proteinen des Cytoplasmas.

Untaugliche Zellkraftwerke werden „verschrottet“

Über diese besondere Reaktivität scheint das untersuchte Enzym direkt die Funktionalität der Mitochondrien zu testen. „Als Resultat dieses speziellen Transportprozesses liegen zwei unterschiedlich lange Versionen von Pink1 vor, deren jeweiliges Mengenverhältnis vermutlich von entscheidender Bedeutung für das Schicksal der Mitochondrien ist“, erläutert Erstautorin Dr. Dorothea Becker, die nun das Forschungsprojekt an der Columbia University weiter verfolgt. „Die beiden verschiedenen Pink1-Versionen dienen höchstwahrscheinlich als Signalgeber für eine Art Qualitätskontrolle der Mitochondrien“, sagt Prof. Voos. Verschiebt sich das Mengenverhältnis der beiden Formen, scheint dies ein Hinweis zu sein, dass das Zellkraftwerk nicht voll funktionsfähig ist. „Pink1 lockt dann andere Enzyme aus dem Cytoplasma an, die dafür sorgen, dass betroffene Mitochondrien verschrottet werden“, so der Biochemiker weiter. Ziel dieser Qualitätskontrolle ist, dass nur Mitochondrien die Arbeit verrichten, die ihre Tauglichkeit unter Beweis gestellt haben.

Führt gestörte Energieversorgung zum Absterben von Nervenzellen?

In früheren Arbeiten hatten die Wissenschaftler bereits untersucht, was passiert, wenn Pink1 gestört ist. Hierfür schalteten sie in Mäusen das Gen stumm, das den Bauplan für das Enzym enthält. „Die Folge war, dass sich dann schadhafte Mitochondrien ansammelten, da sie nicht aus dem Verkehr gezogen wurden“, berichtet Prof. Voos. Letztlich werde dann vermutlich zu wenig Energie für die Zellen bereitgestellt. Das hat offenbar insbesondere Folgen für die besonders empfindlichen Dopamin-produzierenden Nervenzellen, die bei der Parkinson-Krankheit typischerweise absterben. „Mit dieser Arbeit tragen wir zum Verständnis bei, wie die molekulare Brücke zwischen den Mitochondrien und dem Absterben der Gehirnzellen funktioniert“, so der Biochemiker weiter. „Durch ein besseres Verständnis der Grundlagen der Parkinson-Krankheit wird es zukünftig möglich, bessere Therapien für Patienten zu entwickeln.“

Publikation: Pink1 and its Δψ-dependent cleavage product both localize to the outer mitochondrial membrane by a unique targeting mode, Journal of Biological Chemistry (Cell Biology and Neurobiology), DOI: 10.1074/jbc.M112.365700

Kontakt:

Prof. Dr. Wolfgang Voos
Institut für Biochemie und Molekularbiologie
Tel. 0228/732426
E-Mail: wolfgang.voos@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Strom Gene regulieren
29.05.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt
28.05.2020 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Studie zur tiefen Hirnstimulation bei Parkinson-Erkrankung als Meilenstein der Therapie

29.05.2020 | Studien Analysen

Mit Strom Gene regulieren

29.05.2020 | Biowissenschaften Chemie

»Grüner« Wasserstoff oder »grüner« Strom für die Gebäudewärme?

29.05.2020 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics