Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pankreaskrebs: Wandelbare Tumorzellen sind gefährlicher

09.07.2018

Beim Bauchspeicheldrüsenkrebs befallen Metastasen häufig die Leber oder die Lunge. Patienten mit Metastasen ausschließlich in der Lunge haben bessere Prognosen für den Krankheitsverlauf. Welches Organ aber von den Krebszellen bevorzugt wird, hängt von ihrer Fähigkeit ab, sich und ihr Erscheinungsbild zu verändern. Das fand ein Forschungsteam der Technischen Universität München (TUM) heraus.

Befinden sich Zellen in einem Gewebe oder Tumor, bilden sie Kontakte zu anderen Zellen aus und haben eine pflastersteinartige Form. Krebszellen, die Metastasen bilden, müssen zuerst ihre Form und Eigenschaften verändern.


Dr. Maximilian Reichert forscht am TUM Universitätsklinikum rechts der Isar an der Metastasenbildung bei Pankreaskrebs.

Bild: S. Willax

Sie müssen ihren Stoffwechsel umstellen und sich aus dem Zellverband des Tumors lösen können. Sie werden dadurch schmal und länglich und gelangen in angrenzende Blutgefäße. Das Blut nutzen sie als Transportmittel, um andere Organe zu erreichen und ihr Gewebe zu befallen.

Dazu ist aber erneut eine Veränderung notwendig. Die Zellen müssen wieder Kontakt zu anderen Zellen ausbilden können, um sich gewissermaßen an ihnen „festzuhalten“. Nicht alle Krebszellen besitzen diese Wandelbarkeit, die sogenannte Plastizität.

Dr. Maximilian Reichert, Erstautor der neuen Studie und Forschungsgruppenleiter in der Klinik und Poliklinik für Innere Medizin II am TUM Universitätsklinikum rechts der Isar, hat herausgefunden, warum das so ist und welche Folgen das für die Ausbreitung von Bauchspeicheldrüsentumoren hat. Die Ergebnisse wurden in „Developmental Cell“ veröffentlicht.

Leber oder Lunge – was ist entscheidend?

„Wir konnten zeigen, dass vor allem das Befallen der Leber von der Plastizität der Tumorzelle abhängt. Kann die Zelle keine Zell-Zell-Kontakte ausbilden, so wird sie mit dem Blutstrom passiv weiter in die Lunge gespült, wo sie hängen bleibt.“, erklärt Reichert und ergänzt: „Für Patienten ist dieser Verlauf günstiger, da Lungentumore besser kontrollierbar sind.“

Entscheidend für die Wandelbarkeit einer Tumorzelle ist ein molekularer „Kleber“: das Protein E-Cadherin. Es sitzt auf der Zelloberfläche und ist für Zell-Zell-Kontakte verantwortlich. Das Forschungsteam entdeckte in einem Mausmodell, dass die Abwesenheit von E-Cadherin dazu führt, dass Tumorzellen aus dem Bauchspeicheldrüsenkrebs nur in die Lunge ‚streuen‘, nicht aber in die Leber.

War das Protein vorhanden und funktionsfähig, so konnten die Tumorzellen auch in die Leber eindringen. Grund hierfür ist, laut der Forscherinnen und Forscher, dass sich die Krebszellen über den engen Zell-Zell-Kontakt durch E-Cadherin im Lebergewebe verankern und so das Organ auch befallen können. Das Forschungsteam war in der Lage die Anwesenheit von E-Cadherin zu verändern und somit die Metastasierung in den Tieren zu steuern.

Epigenetische Faktoren als Ursache

Im Tumor werden diese Mechanismen offenbar über so genannte epigenetische Programme gelenkt, wie das Forschungsteam herausfand. Hierbei wird unser Erbgut – die DNA – nicht selbst verändert, sondern chemische Faktoren beeinflussen, wie stark oder schwach ein Abschnitt der DNA abgelesen wird.

Gemeinsam mit Kolleginnen und Kollegen am Klinikum rechts der Isar wird das Team um Maximilian Reichert künftig untersuchen, ob sich diese epigenetischen Programme hemmen lassen oder als Angriffspunkt für Therapien eignen. „Je besser wir die Bildung von Metastasen verstehen, umso eher können wir sie beeinflussen. Gerade beim Bauchspeicheldrüsenkrebs wäre das wichtig, denn fast alle Patienten sterben an den Metastasen.“, sagt Reichert.

Publikation:
Maximilian Reichert, Basil Bakir, Leticia Moreira, Jason R. Pitarresi, Karin Feldmann, Lauren Simon, Kensuke Suzuki, Ravikanth Maddipati, Andrew D. Rhim, Anna M. Schlitter, Mark Kriegsmann, Wilko Weichert, Matthias Wirth, Kathleen Schuck, Günter Schneider, Dieter Saur, Albert B. Reynolds, Andres J. Klein-Szanto, Burcin Pehlivanoglu, Bahar Memis, N. Volkan Adsay, Anil K. Rustgi, Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer, Developmental Cell Vol. 45 Iss. 6, June 18, 2018, DOI: 10.1016/j.devcel.2018.05.025
https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30418-0

Kontakt:
Dr. Maximilian Reichert
Klinik und Poliklinik für Innere Medizin II
Klinikum rechts der Isar der TUM
Tel.: +49 (0) 89 41 40 - 27 45
maximilian.reichert@mri.tum.de

Mehr Informationen:

Dr. Maximilian Reichert ist Max-Eder Nachwuchsgruppenleiter und Mitglied des Sonderforschungsbereichs „Modellierung und Targeting des Pankreaskarzinoms“ (SFB1321, Sprecher: Prof. Roland M. Schmid), in dem unter anderem die klinische Anwendung von Plastizität als therapeutische Zielstruktur untersucht werden soll.

Profil von Maximilian Reichert
https://www.professoren.tum.de/de/tum-junior-fellows/r/reichert-maximilian/

Arbeitsgruppe Dr. Maximilian Reichert
https://www.med2.mri.tum.de/de/forschung/grundlagenforschung/ag-reichert.php

Klinik und Poliklinik für Innere Medizin II
https://www.med2.mri.tum.de/

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34797/ - Diese Pressemeldung im Web
https://www.tum.de/die-tum/aktuelles/ - Alle Pressemeldungen der Technischen Universität München

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics