Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organismen ohne Zellkern sind komplexer als bislang angenommen

02.02.2010
Wissenschaftler weisen räumliche Trennung von Informationsverarbeitung und Energiestoffwechsel in einem Prokaryoten nach

Höhere Zellen zeichnen sich durch eine räumliche Trennung wichtiger zellulärer Funktionen aus. Sie haben einen Zellkern, der das Erbgut enthält, ein Cytoplasma, in dem die Informationsverarbeitung sowie die Proteinsynthese abläuft und Organellen wie Mitochondrien, in denen die Energieproduktion der Zellen stattfindet.

Demgegenüber sind Prokrayoten (zumeist einzellige Organismen ohne Zellkern) einfacher aufgebaut: ein Cytoplasma, in dem all diese Funktionen vereinigt sind, ist von der schützenden cytoplasmatischen Membran umschlossen. Einige Bakterien haben darüber hinaus eine zweite äußere Membran, die die Zellen vor Umwelteinflüssen schützt. Der sich daraus ergebende Zwischenraum (Periplasma) gilt aber in der Regel als reaktionsarmer Bereich und entspricht eher dem Milieu des umgebenden Lebensraums als dem des Zellinneren.

Vor einigen Jahren wurde am Institut für Biochemie, Genetik und Mikrobiologie der Universität Regensburg das Archaeon (Urbakterium) Ignicoccus hospitalis ("gastliche Feuerkugel") aus einem untermeerischen Vulkangebiet um Island isoliert. Durch eine optimale Wachstumstemperatur von 90°C und der Verwertung von Schwefel, Wasserstoff und Kohlendioxid ist es bestens an solche urtümlichen Biotope angepasst. Als Besonderheit verfügt Ignicoccus hospitalis als einziges Archaeon über zwei Membranen und über einen ungewöhnlich großen Intermembranraum, über dessen Funktion bislang nur spekuliert wurde.

Jetzt hat eine Gruppe von Wissenschaftlern der Universität Regensburg um PD Dr. Reinhard Rachel, Dr. Harald Huber, Ulf Küper und Carolin Meyer in Zusammenarbeit mit Prof. Dr. Volker Müller von der Goethe Universität Frankfurt am Main die Entdeckung gemacht, dass bei diesem Mikroorganismus die äußerste Membran der Ort der Energieproduktion ist. Im Rahmen ihrer Untersuchungen konnten die Forscher nachweisen, dass sich bei Ignicoccus die für die Energiegewinnung maßgeblichen Enzyme und Enzymkomplexe in dieser Membran und nicht etwa in der inneren Cytoplasmamembran befinden. Zudem zeigten die Experimente eindeutig, dass die innere Membran die DNA umschließt.

Zum ersten Mal konnte damit für einen Prokaryoten eine räumliche Trennung von Energiegewinnung und anderen zellulären Prozessen - wie zum Beispiel der Biosynthese von Proteinen und Nukleinsäuren - nachgewiesen werden. Diese Ergebnisse werfen zahlreiche weiterführende Fragen auf. So dürfte die Form der Kommunikation zwischen den beiden Zellbestandteilen sowie Überlegungen zur allgemeinen Definition einer cytoplasmatischen Membran im Zentrum künftiger Arbeiten stehen. Möglicherweise, so die Forscher, stellt Ignicoccus sogar einen Vorläufer auf dem Weg zu den höheren Organismen (Eukaryonten) dar, bei denen zahlreiche membranumhüllte Organellen die unterschiedlichen Aufgaben (Energiegewinnung, Informationsweitergabe) in den Zellen übernommen haben.

Publikation:
Ulf Küper, Carolin Meyer, Volker Müller, Reinhard Rachel, Harald Huber,
"Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis" (PNAS, electronic edition, Feb. 2010)
Ansprechpartner für Medienvertreter:
Dr. Harald Huber
Universität Regensburg
Lehrstuhl für Mikrobiologie & Archaeenzentrum
Tel.: 0941 943-3185
Harald.Huber@biologie.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics