Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optogenetik erforscht molekulare Schalter für Nervenzellen

28.10.2015

Forscher der Universität Bielefeld veröffentlichen zu jungem Forschungsgebiet mit Licht-gesteuerten Zellen

In der Optogenetik wird Licht zur Steuerung von Nerven- und anderen elektrisch erregbaren Zellen genutzt. Dazu werden die Zellen gentechnisch so verändert, dass sie mit Licht einer bestimmten Wellenlänge gezielt angesprochen werden können.


Prof. Dr. Armin Hallmann (l.) und Dr. Arash Kianianmomeni betreiben Grundlagenforschung auf den Gebieten Molekulare Zellbiologie und Optogenetik.

Foto: Universität Bielefeld

In der Fachzeitschrift Trends in Biochemical Sciences berichten jetzt die beiden Bielefelder Wissenschaftler Dr. Arash Kianianmomeni und Professor Dr. Armin Hallmann von neuen optogenetischen Werkzeugen, mit denen Neurone nicht nur schnell angeschaltet, sondern auch schnell wieder ausgeschaltet werden können, ohne dabei die natürlichen Abläufe in der Zelle zu stören. Diese molekularen Lichtsensoren eröffnen neue Möglichkeiten – sowohl für die neuro- und zellbiologische Grundlagenforschung als auch für die biomedizinische Anwendung.

Grundlegend für das neue Forschungsgebiet der Optogenetik war die Entdeckung des Licht-aktivierbaren Proteins Channelrhodopsin in Grünalgen im Jahr 2002. Dieses Protein sitzt in der Membran der Algenzelle, und es öffnet nach Anregung mit Licht einer bestimmten Wellenlänge einen Kanal, um geladene Teilchen (Ionen) durch die Membran zu schleusen.

In den begeißelten Grünalgen dienen diese Licht-aktivierbaren Proteine der Lichtwahrnehmung, um zum Beispiel gezielt zum Licht schwimmen zu können. Der Weg von Licht-aktivierbaren Proteinen aus Grünalgen hin zu molekularen Werkzeugen in der Hirnforschung kann manchmal ganz kurz sein: In einer elektrisch erregbaren Nervenzelle (Neuron) wird nämlich durch das Durchschleusen von geladenen Teilchen durch die Zellmembran ein Nervenimpuls ausgelöst.

Schafft man es, diese Licht-aktivierbaren Algenproteine mittels Gentechnik in die Nervenzellen zu bringen, können diese Zellen mit Licht nicht-invasiv angeregt werden. Sobald die Optogenetiker besser erforscht haben, wie man Nervenzellen mit Licht steuern kann, ist es auch möglich, Gehirnfunktionen zu beeinflussen. „Zu den Eigenschaften eines molekularen Schalters sollte allerdings nicht nur das schnelle Einschalten, sondern auch das schnelle Ausschalten gehören“, erklärt Dr. Arash Kianianmomeni. Letzteres sei bislang allerdings nicht realisierbar gewesen.

Die ersten effektiven molekularen Ausschalter wurden wieder in Algen (Cryptophyta) identifiziert. „Durch gezielte Gentechnik, basierend auf der 3D-Struktur der Proteine, können mittlerweile sogar Anschalter in Ausschalter umgewandelt werden. Somit ist es jetzt möglich, gentechnisch veränderte Nervenzellen durch Licht einer bestimmten Wellenlänge schnell anzuschalten und durch Licht einer anderen Wellenlänge schnell wieder auszuschalten“, sagt Professor Dr. Armin Hallmann. Die Optogenetik erlaube es auch, nur ganz bestimmte Zelltypen innerhalb eines Zellverbands mit einem „Lichtschalter“ zu versehen.

Inzwischen arbeiten weltweit etwa 1.500 Labore an unterschiedlichsten Aspekten im Zusammenhang mit den Licht-aktivierbaren An- und Ausschaltern, wobei es meist um Grundlagenforschung geht. Mit Hilfe der molekularen Schalter lässt sich nun die Funktionsweise der Nervenzellnetzwerke im Gehirn lebender Tiere untersuchen. Dabei sind insbesondere auch Tiere von Interesse, die Krankheitsbilder entwickeln, die schwerwiegenden menschlichen Erkrankungen ähneln.

Bereits jetzt spielt die Optogenetik eine wichtige Rolle bei der Aufklärung von Gehirnfunktionen und bei der Erforschung von neurologischen Erkrankungen wie Parkinson, Alzheimer, Aufmerksamkeits-Defizit-Hyperaktivitäts-Störung (ADHS), Schmerzstörungen, Suchterkrankungen, Tourette-Syndrom und Epilepsie. „Langfristig besteht auch die Hoffnung Optogenetik-basierte Therapiemöglichkeiten für diese neurologischen Erkrankungen zu entwickeln“, sagt Arash Kianianmomeni. „Die oben genannten Licht-abhängigen Ausschalter wären insbesondere auch bei Erkrankungen wie der Epilepsie oder dem Tourette-Syndrom von Bedeutung, da sie von Übererregungen in bestimmten Hirnbereichen verursacht werden.“

Originalveröffentlichung:
Arash Kianianmomeni, Armin Hallmann: Spotlighted Brains: Optogenetic Activation and Silencing of Neurons. Trends in Biochemical Sciences. DOI: http://dx.doi.org/10.1016/j.tibs.2015.09.004

Sandra Sieraad | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bielefeld.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Haltbar und frisch - Neutronen zeigen Details des Prozesses der Gefriertrocknung
27.02.2020 | Technische Universität München

nachricht Wie Enzyme Zuckerbäume bauen
27.02.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bonner Mediziner etablieren weltweit neues, leicht tragbares Ultraschallsystem aus den USA für die Lehre am Krankenbett

27.02.2020 | Medizintechnik

Gegen multiresistente Tuberkulose-Erreger: Mit künstlicher Intelligenz neuen Wirkstoffkombinationen auf der Spur

27.02.2020 | Medizin Gesundheit

Mikro-Überlebenskünstler: Archaeen bewältigen biologische Methanisierung trotz Asche und Teer

27.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics