Optimierte Biosensoren zeigen Signalwege in einzelnen lebenden Zellen

In wachsenden Neuriten wird RhoA in Filopodien aktiviert (rote Pfeile, links). Beim Kollaps von Neuriten (rechts) kommt es hingegen zur Ausbreitung der RhoA-Aktivierungszone.<br><br>Departement Biomedizin der Universität Basel<br>

Die erfolgreiche Anwendung dieses Baukastenprinzips hat zur Optimierung von Biosensoren für zwei bestimmte Proteine geführt, wie die Wissenschaftler in der Fachzeitschrift «Science Signaling» berichten. Die verbesserten Sensoren eignen sich für neue Fragestellungen in der Krebs- und neurobiologischen Forschung.

Biosensoren ermöglichen die Darstellung und Quantifizierung von biologischen Vorgängen in der Zelle. Anders als durch klassische biochemische Methoden können Biosensoren Signalwege sowohl räumlich als auch zeitlich in den einzelnen Zellen beschreiben – was tiefere Einblicke in die regulatorischen Mechanismen und dynamischen Vorgänge der lebenden Zelle möglich macht.

Prinzip des Fluoreszenz-Transfers

Biosensoren, die auf dem Prinzip des sogenannten Fluoreszenz-Resonanzenergietransfers (FRET) beruhen, sind dafür besonders geeignet. Dabei wird Energie über kurze Distanz von einem Fluorenszenzträger (Fluorophor) auf einen andern übertragen, der sie in Form von Licht wieder abgibt.

So lassen sich Biosensoren konstruieren, die an- und ausgeschaltet werden können: Im inaktiven Zustand tritt kein Transfer auf, da die Fluorophore zu weit voneinander entfernt sind. Wird der Sensor aber durch ein zelluläres Signal aktiviert, kommt es zu einer räumlichen Annäherung der beiden Fluorophore und zu einem Transfer. Somit dient das FRET-Signal als Nachweis eines bestimmten Signals in der Zelle.

Das Designen von Biosensoren ist kompliziert und langwierig, da die FRET-Effizienz immer wieder empirisch optimiert werden muss. Um dies zu vereinfachen, hat die Forschungsgruppe von Prof. Olivier Pertz vom Departement Biomedizin der Universität Basel ein Set von vorgefertigten Biosensoren hergestellt. Die Komponenten können einfach ausgetauscht werden, um Biosensoren für andere Signalproteine zu konstruieren. Mithilfe dieser Biosensor-Bibliothek wurde die Sensitivität von bereits bestehenden Sensoren für zwei Proteine – die kleine GTPase RhoA und für die Kinase ERK – wesentlich verbessert.

Einblicke in die Zelldynamik

Der optimierte RhoA-Sensor erlaubte es erstmals, die Aktivität dieses Proteins in sehr kleinen und dünnen Zellfortsätzen, den sogenannten Filopodien, zu messen. In neuronalen Zellen wurde gezeigt, dass beim Auswachsen von Neuriten in den Filopodien lediglich eine kleine, lokale RhoA-Population aktiviert wird. Kollabierte der Neurit, wurde hingegen eine grosse RhoA-Population aktiviert. Dies zeigt, dass unterschiedliche Subpopulationen von RhoA unterschiedliche Aspekte der Zelldynamik wie Neuritenwachstum oder -kollaps regulieren können, und zwar abhängig vom Ort der Aktivierung.

Der ebenso weiterentwickelte Biosensor für ERK konnte erfolgreich für die Analyse des Signalwegs dieses Proteins in lebenden Zebrafischen eingesetzt werden. Dieser Signalweg ist in vielen Tumoren dereguliert. Der neue Sensor könnte somit zur Untersuchung des Tumorwachstums und des Metastasierungsprozesses in Mausmodellen verwendet werden. Mit dem neuen ERK-Biosensor lassen sich zudem Tausende von individuellen Zellen einer Zellpopulation schnell und ohne grossen technischen Aufwand untersuchen. Damit könnte der Sensor die Basis für eine Plattform zum Testen von pharmakologischen Inhibitoren bieten. In solchen Screening-Experimenten liessen sich auch jene Tumorzellen identifizieren, die keine Sensitivität gegenüber den Inhibitoren zeigen und zur Therapieresistenz während der Chemotherapie führen könnten.

Originalbeitrag
R. D. Fritz, M. Letzelter, A. Reimann, K. Martin, L. Fusco, L. Ritsma, B. Ponsioen, E. Fluri, S. Schulte-Merker, J. van Rheenen, O. Pertz
A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space

Sci. Signal. 6, rs12 (2013) | doi: 10.1126/scisignal.2004135

Weitere Auskünfte
Prof. Olivier Pertz, Departement Biomedizin der Universität Basel, Institut für Biochemie und Genetik, Tel. +41 61 267 35 41, E-Mail: olivier.pertz@unibas.ch
Weitere Informationen:
http://www.ncbi.nlm.nih.gov/pubmed/23882122 – Abstract

Media Contact

Christoph Dieffenbacher Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer