Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oberflächenrezeptoren feuern auch im Zellinneren

18.08.2009
Forscher vom Rudolf-Virchow-Zentrum klären grundlegenden Mechanismus auf

Oberflächenrezeptoren leiten nicht nur Signale von außen in die Zelle, sondern können auch in der Zelle selbst aktiv sein. Das zeigen Würzburger Forscher vom Rudolf-Virchow-Zentrum heute in der online Fachzeitschrift PLoS Biology und stellen damit die bisherige Lehrbuchmeinung auf den Kopf.


Schilddrüsenfollikel isoliert aus Mäusen, die einen Sensor für sekundäre Botenstoffe aufweisen. Nach Stimulierung des TSH-Rezeptors mit dem Hormon TSH verfärbt sich der Follikel (rechts), die sekundären Botenstoffe werden aktiviert. Nach anhaltender Stimulierung (bis zu 30 min) geht die Aktivierung der Botenstoffe nicht wieder zurück.
(PLoS Biol doi:10.1371/journal.pbio.1000172)

Die untersuchten Rezeptoren gehören zur wichtigsten Klasse von Oberflächenrezeptoren im menschlichen Körper und sind in eine Vielzahl physiologischer Prozesse sowie der Entstehung von Krankheiten involviert.

G-Protein-gekoppelte Rezeptoren sitzen in der Zellmembran und leiten Licht-, Geruchs- und Geschmacksreize von außen in die Zelle weiter. Darüber hinaus spielen sie nicht nur bei der Zellbewegung, dem Zellwachstum oder der Zelldifferenzierung eine wichtige Rolle, sondern sind auch Angriffspunkt von Hormonen wie Adrenalin, oder von Neurotransmittern wie Acetylcholin. G-Protein-gekoppelte Rezeptoren sind also in die wichtigsten physiologischen Prozesse involviert. Das hat ihnen eine Schlüsselrolle bei der Entwicklung von Medikamenten zuteil kommen lassen. Ein Großteil der heutigen Medikamente greift an diesen Rezeptoren an, um Entzündungsprozesse, Allergien oder Erkrankungen wie Bluthochdruck oder Herzmuskelschwäche zu therapieren. Die bekanntesten sind Betablocker, Opioide oder Sympathomimetika.

Die Rezeptoren auf der Zelloberfläche leiten Signale von außen in die Zelle und aktivieren dort so genannte sekundäre Botenstoffe, die eigentlichen Reaktionsauslöser. Werden die Rezeptoren länger gereizt, so führt das dazu, dass sie in das Zellinnere transportiert werden und von der Oberfläche verschwinden. Wissenschaftler vermuteten bisher, dass, einmal im Inneren angelangt, der Rezeptor inaktiv wird und keine Botenstoffe mehr aktivieren kann. Sie nahmen an, dass dahinter eine Art Abschaltmechanismus, bzw. eine Maßnahme um den Rezeptor im Inneren wieder zu recyceln steckt. Andere beobachteten allerdings für verwandte Rezeptoren, dass diese in der Zelle weiter aktiv bleiben. Ein Beispiel ist der epidermale Wachstumsfaktor-Rezeptor, der das Zellwachstum beeinflusst und bei Fehlregulation Krebs auslösen kann.

Ob diese G-Protein gekoppelten Rezeptoren im Zellinneren noch funktionieren oder nicht, ist hinsichtlich der gezielten Wirkung von Medikamenten eine essentielle Frage. Die Forscher um Dr. Davide Calebiro, Dr. Viacheslav Nikolaev und Prof. Dr. Martin Lohse vom Rudolf-Virchow-Zentrum und Kollegen der Universitäten Mailand und Genua untersuchten dazu den TSH-Rezeptor, ein G-Protein-gekoppelter Rezeptor in Schilddrüsenfollikeln von Mäusen. Die Follikel sind kleine Bläschen im Schilddrüsengewebe, die kreisförmig angeordnete Epithelzellen besitzen und Schilddrüsenhormone produzieren. Schilddrüsenfollikel können im Labor gut gehalten werden und weisen alle natürlich vorkommenden Proteine und sekundäre Botenstoffe auf, die im lebenden Organismus vorhanden sind und der TSH-Rezeptor zur Weiterleitung braucht.

Davide Calebiro nutzte für seine Messungen einen fluoreszierenden Sensor für die sekundären Botenstoffe. In den aus der Maus isolierten Schilddrüsenfollikel kann er damit unter dem Mikroskop farblich verfolgen, ob der Rezeptor ein Signal an die sekundären Botenstoffe weitergibt. Um den Rezeptor zu stimulieren, ist das Thyreoidea-stimulierende Hormon (TSH) nötig, das die Schilddrüsenhormonproduktion anregt und bei Fehlregulation zur Unter- oder Überfunktion der Schilddrüse führt. Wie erwartet tritt nach einer Zugabe des Hormons eine Verfärbung der Follikel auf (Bild 1). Der Rezeptor ist aktiv und gibt das Signal an die sekundären Botenstoffe weiter. Eine anhaltende Gabe des Hormons führt dazu, dass der Rezeptor in die Zelle transportiert wird. Auch das lässt sich im Mikroskop farblich darstellen (Bild 2). Das Besondere jedoch: Ist der Rezeptor in der Zelle, zeigt der Sensor immer noch die gleiche Farbintensität wie vorher. Das Signal des sekundären Botenstoffs bricht also nicht ab, der Rezeptor feuert auch im Zellinneren. Wird der Transport des Rezeptors ins Zellinnere blockiert, so nimmt das Signal des sekundären Botenstoffs ab.

"Das lässt vermuten, dass das klassische Paradigma von einem Signal ausschließlich von der Zelloberfläche einer Revision bedarf. Der Rezeptor scheint sowohl von der Oberfläche als auch vom Inneren zu funktionieren. Das hat zur Folge, dass das Signal noch länger anhält als bisher beobachtet. Es scheint allerdings, dass die Konsequenzen für die Zelle unterschiedlich sind", so Martin Lohse vom Rudolf-Virchow-Zentrum. Schon länger beobachtet man, dass gleiche biologische Signalwege genutzt werden, um unterschiedliche Reaktionen in der Zelle auszulösen. Die Forscher nehmen an, dass es darauf ankommt, woher das Signal kommt. Ist der Rezeptor einmal in der Zelle angelangt, kann er über den gleichen Weg andere Zellbestandteile erreichen, wie beispielsweise den Zellkern, und ganz unterschiedliche, vielleicht sogar gegenteilige Reaktionen auslösen. Auch für den untersuchten TSH-Rezeptor konnten die Wissenschaftler einen festen Ort in einem Kompartiment nahe dem Golgi-Apparat der Zelle ausmachen. Die Ergebnisse zeigen, dass Oberflächenrezeptoren viel komplizierter funktionieren als bisher angenommen.

"Wir müssen jetzt genauer untersuchen, ob dieser Transport auch bei anderen G-Protein-gekoppelten Rezeptoren mit einem stetigen Signal in der Zelle einhergeht. Nicht nur der TSH-Rezeptor, der bei verschiedenen Schilddrüsen-Erkrankungen eine Rolle spielt, sondern auch andere dieser Rezeptoren sind sehr interessant", so Martin Lohse über die weitere Forschung. Ist dies ein genereller Mechanismus, so könne gezielt der Transport ins Zellinnere blockiert werden - und dies wäre ein ganz neuer pharmakologischer Ansatz für eine Vielzahl von Erkrankungen.

Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, et al. (2009) Persistent cAMP-Signals Triggered by Internalized G-Protein-Coupled Receptors. PLoS Biol 7(8): e1000172. doi:10.1371/journal.pbio.1000172

Kontakt:
Dr. Davide Calebiro MD
Rudolf-Virchow-Zentrum/ University of Milan
Derzeitig zu erreichen an der Universität von Mailand:
Tel.: +39 02 61911 -3043 (oder -2432)
Mobil: +39 349 5504425
E-Mail: davide.calebiro@unimi.it
Dr. Viacheslav Nikolaev
Rudolf-Virchow-Zentrum/
Institut für Pharmakologie
Universität Würzburg
Tel.: 0931-201 48670
E-Mail: nikolaev@toxi.uni-wuerzburg.de
Sonja Jülich-Abbas
Leiterin Presse- und Öffentlichkeitsarbeit
Rudolf-Virchow-Zentrum
Universität Würzburg
Tel.: 0931-201 48714
E-Mail: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de
http://www.plosbiology.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics