Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oberflächenrezeptoren feuern auch im Zellinneren

18.08.2009
Forscher vom Rudolf-Virchow-Zentrum klären grundlegenden Mechanismus auf

Oberflächenrezeptoren leiten nicht nur Signale von außen in die Zelle, sondern können auch in der Zelle selbst aktiv sein. Das zeigen Würzburger Forscher vom Rudolf-Virchow-Zentrum heute in der online Fachzeitschrift PLoS Biology und stellen damit die bisherige Lehrbuchmeinung auf den Kopf.


Schilddrüsenfollikel isoliert aus Mäusen, die einen Sensor für sekundäre Botenstoffe aufweisen. Nach Stimulierung des TSH-Rezeptors mit dem Hormon TSH verfärbt sich der Follikel (rechts), die sekundären Botenstoffe werden aktiviert. Nach anhaltender Stimulierung (bis zu 30 min) geht die Aktivierung der Botenstoffe nicht wieder zurück.
(PLoS Biol doi:10.1371/journal.pbio.1000172)

Die untersuchten Rezeptoren gehören zur wichtigsten Klasse von Oberflächenrezeptoren im menschlichen Körper und sind in eine Vielzahl physiologischer Prozesse sowie der Entstehung von Krankheiten involviert.

G-Protein-gekoppelte Rezeptoren sitzen in der Zellmembran und leiten Licht-, Geruchs- und Geschmacksreize von außen in die Zelle weiter. Darüber hinaus spielen sie nicht nur bei der Zellbewegung, dem Zellwachstum oder der Zelldifferenzierung eine wichtige Rolle, sondern sind auch Angriffspunkt von Hormonen wie Adrenalin, oder von Neurotransmittern wie Acetylcholin. G-Protein-gekoppelte Rezeptoren sind also in die wichtigsten physiologischen Prozesse involviert. Das hat ihnen eine Schlüsselrolle bei der Entwicklung von Medikamenten zuteil kommen lassen. Ein Großteil der heutigen Medikamente greift an diesen Rezeptoren an, um Entzündungsprozesse, Allergien oder Erkrankungen wie Bluthochdruck oder Herzmuskelschwäche zu therapieren. Die bekanntesten sind Betablocker, Opioide oder Sympathomimetika.

Die Rezeptoren auf der Zelloberfläche leiten Signale von außen in die Zelle und aktivieren dort so genannte sekundäre Botenstoffe, die eigentlichen Reaktionsauslöser. Werden die Rezeptoren länger gereizt, so führt das dazu, dass sie in das Zellinnere transportiert werden und von der Oberfläche verschwinden. Wissenschaftler vermuteten bisher, dass, einmal im Inneren angelangt, der Rezeptor inaktiv wird und keine Botenstoffe mehr aktivieren kann. Sie nahmen an, dass dahinter eine Art Abschaltmechanismus, bzw. eine Maßnahme um den Rezeptor im Inneren wieder zu recyceln steckt. Andere beobachteten allerdings für verwandte Rezeptoren, dass diese in der Zelle weiter aktiv bleiben. Ein Beispiel ist der epidermale Wachstumsfaktor-Rezeptor, der das Zellwachstum beeinflusst und bei Fehlregulation Krebs auslösen kann.

Ob diese G-Protein gekoppelten Rezeptoren im Zellinneren noch funktionieren oder nicht, ist hinsichtlich der gezielten Wirkung von Medikamenten eine essentielle Frage. Die Forscher um Dr. Davide Calebiro, Dr. Viacheslav Nikolaev und Prof. Dr. Martin Lohse vom Rudolf-Virchow-Zentrum und Kollegen der Universitäten Mailand und Genua untersuchten dazu den TSH-Rezeptor, ein G-Protein-gekoppelter Rezeptor in Schilddrüsenfollikeln von Mäusen. Die Follikel sind kleine Bläschen im Schilddrüsengewebe, die kreisförmig angeordnete Epithelzellen besitzen und Schilddrüsenhormone produzieren. Schilddrüsenfollikel können im Labor gut gehalten werden und weisen alle natürlich vorkommenden Proteine und sekundäre Botenstoffe auf, die im lebenden Organismus vorhanden sind und der TSH-Rezeptor zur Weiterleitung braucht.

Davide Calebiro nutzte für seine Messungen einen fluoreszierenden Sensor für die sekundären Botenstoffe. In den aus der Maus isolierten Schilddrüsenfollikel kann er damit unter dem Mikroskop farblich verfolgen, ob der Rezeptor ein Signal an die sekundären Botenstoffe weitergibt. Um den Rezeptor zu stimulieren, ist das Thyreoidea-stimulierende Hormon (TSH) nötig, das die Schilddrüsenhormonproduktion anregt und bei Fehlregulation zur Unter- oder Überfunktion der Schilddrüse führt. Wie erwartet tritt nach einer Zugabe des Hormons eine Verfärbung der Follikel auf (Bild 1). Der Rezeptor ist aktiv und gibt das Signal an die sekundären Botenstoffe weiter. Eine anhaltende Gabe des Hormons führt dazu, dass der Rezeptor in die Zelle transportiert wird. Auch das lässt sich im Mikroskop farblich darstellen (Bild 2). Das Besondere jedoch: Ist der Rezeptor in der Zelle, zeigt der Sensor immer noch die gleiche Farbintensität wie vorher. Das Signal des sekundären Botenstoffs bricht also nicht ab, der Rezeptor feuert auch im Zellinneren. Wird der Transport des Rezeptors ins Zellinnere blockiert, so nimmt das Signal des sekundären Botenstoffs ab.

"Das lässt vermuten, dass das klassische Paradigma von einem Signal ausschließlich von der Zelloberfläche einer Revision bedarf. Der Rezeptor scheint sowohl von der Oberfläche als auch vom Inneren zu funktionieren. Das hat zur Folge, dass das Signal noch länger anhält als bisher beobachtet. Es scheint allerdings, dass die Konsequenzen für die Zelle unterschiedlich sind", so Martin Lohse vom Rudolf-Virchow-Zentrum. Schon länger beobachtet man, dass gleiche biologische Signalwege genutzt werden, um unterschiedliche Reaktionen in der Zelle auszulösen. Die Forscher nehmen an, dass es darauf ankommt, woher das Signal kommt. Ist der Rezeptor einmal in der Zelle angelangt, kann er über den gleichen Weg andere Zellbestandteile erreichen, wie beispielsweise den Zellkern, und ganz unterschiedliche, vielleicht sogar gegenteilige Reaktionen auslösen. Auch für den untersuchten TSH-Rezeptor konnten die Wissenschaftler einen festen Ort in einem Kompartiment nahe dem Golgi-Apparat der Zelle ausmachen. Die Ergebnisse zeigen, dass Oberflächenrezeptoren viel komplizierter funktionieren als bisher angenommen.

"Wir müssen jetzt genauer untersuchen, ob dieser Transport auch bei anderen G-Protein-gekoppelten Rezeptoren mit einem stetigen Signal in der Zelle einhergeht. Nicht nur der TSH-Rezeptor, der bei verschiedenen Schilddrüsen-Erkrankungen eine Rolle spielt, sondern auch andere dieser Rezeptoren sind sehr interessant", so Martin Lohse über die weitere Forschung. Ist dies ein genereller Mechanismus, so könne gezielt der Transport ins Zellinnere blockiert werden - und dies wäre ein ganz neuer pharmakologischer Ansatz für eine Vielzahl von Erkrankungen.

Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, et al. (2009) Persistent cAMP-Signals Triggered by Internalized G-Protein-Coupled Receptors. PLoS Biol 7(8): e1000172. doi:10.1371/journal.pbio.1000172

Kontakt:
Dr. Davide Calebiro MD
Rudolf-Virchow-Zentrum/ University of Milan
Derzeitig zu erreichen an der Universität von Mailand:
Tel.: +39 02 61911 -3043 (oder -2432)
Mobil: +39 349 5504425
E-Mail: davide.calebiro@unimi.it
Dr. Viacheslav Nikolaev
Rudolf-Virchow-Zentrum/
Institut für Pharmakologie
Universität Würzburg
Tel.: 0931-201 48670
E-Mail: nikolaev@toxi.uni-wuerzburg.de
Sonja Jülich-Abbas
Leiterin Presse- und Öffentlichkeitsarbeit
Rudolf-Virchow-Zentrum
Universität Würzburg
Tel.: 0931-201 48714
E-Mail: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de
http://www.plosbiology.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics