Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018

Ein RNA-Bindeprotein in neu entdeckten Zellkernkörperchen verhindert Zellteilung und wacht über Genomstabilität

Biochemiker der Medizinischen Fakultät Mannheim der Universität Heidelberg haben einen unerwarteten Mechanismus entdeckt, der dazu beiträgt, dass Zellteilung nur dann stattfinden kann, wenn die Erbsubstanz (DNA) im Zellkern sich vollständig verdoppelt hat.


Störungen der DNA-Replikation führen zum Stillstand des Zellzyklus vor der eigentlichen Zellteilung...

Das Forscherteam um Professor Dr. Georg Stoecklin stieß auf ein RNA-Bindeprotein namens TIAR, dessen Abwesenheit zur Störung der Zellteilung und zu schweren Schäden in Chromosomen führt.

Für das Funktionieren und die Gesundheit unseres Körpers ist es wichtig, dass das Genom bei der Zellteilung ohne Fehler auf die beiden Tochterzellen übertragen wird. Um dies sicherzustellen, haben Zellen Kotrollpunkte (engl. checkpoints) in ihren Zellzyklus eingebaut.

Von besonderer Wichtigkeit ist der G2/M Kontrollpunkt, der dafür sorgt, dass die Verdoppelung der DNA (DNA-Replikation) abgeschlossen ist, bevor die Zellen von der G2-Phase in die Mitose, also die eigentliche Zellteilung, eintreten.

Zusammen mit Forschern am Spanish National Cancer Research Centre (CNIO) in Madrid und am Deutschen Krebsforschungszentrum (DKFZ) Heidelberg konnten Wissenschaftler der Medizinischen Fakultät Mannheim der Universität Heidelberg zeigen, dass das RNA-Bindeprotein TIAR die Zellteilung verhindert, solange die DNA-Replikation im Zellkern nicht abgeschlossen ist.

Insbesondere bewirkt TIAR eine Hemmung der Zellzykluskinase CDK1, eines Signalproteins, das für die Zellteilung von zentraler Bedeutung ist.

Bei ihren Untersuchungen entdeckten die Forscher eine neuartige Struktur im Zellkern, sogenannte G2/M Transition Granules. Dabei handelt es sich um besondere Zellkernkörperchen, die am Übergang von der G2-Phase in die Mitose gebildet werden.

Die Wissenschaftler erkannten, dass die Zellkernkörperchen immer dann stark zunehmen, wenn Probleme bei der DNA-Replikation auftreten und Zellteilung verhindert werden muss. Die Forscher konnten zeigen, dass TIAR sich in den Zellkernkörperchen zusammen mit der Zellzykluskinase CDK1 anreichert und eine hemmende Wirkung auf CDK1 ausübt.

Warum aber übernimmt gerade ein RNA-Bindeprotein eine solche Funktion in der Zellzykluskontrolle? Hinweise auf eine Antwort fanden die Forscher in der Zusammensetzung der Zellkernkörperchen, die neben Komponenten der DNA-Replikationsmaschinerie auch eine RNA-Polymerase enthalten.

Dieser Umstand legt die Vermutung nahe, dass Schwierigkeiten in der DNA-Replikation zur lokalen Synthese von RNA als eine Art „Notsignal“ und zur Bildung der Zellkernkörperchen führen. Das RNA-Bindeprotein erkennt dieses Notsignal und verhindert durch seinen hemmenden Einfluss auf CDK1 den Eintritt in die Zellteilung.

Mit ihrer Arbeit leisten die Wissenschaftler um Professor Stoecklin einen wichtigen Beitrag zum Verständnis der Zellzykluskontrolle, die dafür sorgt, dass das Genom in unseren Zellen stabil bleibt und Schäden in der DNA nicht fortgepflanzt werden.

Bisher war vor allem bekannt, dass die ATR-Kinase bei Problemen während der DNA-Replikation den Übergang von der G2-Phase in die Mitose verhindert. Mit der Entdeckung der Zellkernkörperchen und der Rolle von TIAR fügen sie dem bisher bekannten ATR-Signalweg einen neuartigen Mechanismus hinzu, der den G2/M-Kontrollpunkt mit aktiviert.

Da die Zellzykluskontrolle eine besondere Bedeutung für die Entstehung von Krebs hat, wird sich das Forscherteam um Professor Stoecklin nun darauf konzentrieren, die Rolle von TIAR in der Entstehung von Krebs zu untersuchen.

Die Ergebnisse dieser Arbeit deuten darauf hin, dass die Menge an TIAR in Tumorzellen darüber entscheiden könnte, ob eine Krebsbehandlung mit ATR-Hemmern, die derzeit experimentell erprobt wird, wirksam ist. Die Zukunft wird zeigen, ob die Entschlüsselung zellulärer Notsignale zu einer besseren Behandlung von Krebs beitragen kann.

Der Mechanismus in der Grafik

Störungen der DNA-Replikation führen zum Stillstand des Zellzyklus vor der eigentlichen Zellteilung. Dabei bilden sich als eine Art "Notsignal" besondere Zellkernkörperchen, in denen sich das RNA-Bindeprotein TIAR zusammen mit der Zellzykluskinase CDK1 anreichert. TIAR bewirkt eine Hemmung von CKD1, trägt damit bei zur Zellzykluskontrolle und verhindert die fehlerhafte Weitergabe des Genoms an die Tochterzellen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Stoecklin
Professur für Biochemie
Medizinische Fakultät Mannheim der Universität Heidelberg
Centrum für Biomedizin und Medizintechnik Mannheim
Ludolf-Krehl-Straße 13-17
68167 Mannheim
Tel. 0621 / 383 71444
georg.stoecklin@medma.uni-heidelberg.de

Originalpublikation:

TIAR marks nuclear G2/M transition granules and restricts CDK1 activity under replication stress
V. Lafarga, H.-M. Sung, K. Haneke, L. Roessig, A.-L. Pauleau, M. Bruer, S. Rodriguez-Acebes, A.J. Lopez-Contreras, O.J. Gruss, S. Erhardt, J. Mendez, O. Fernandez-Capetillo, and G. Stoecklin
EMBO Reports,
DOI: 10.15252/embr.201846224

Dr. Eva Maria Wellnitz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.umm.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Inventur in der Synapse
17.06.2019 | Leibniz-Institut für Neurobiologie

nachricht Zellbiologie - Qualitätskontrolle für Mitochondrien
17.06.2019 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics