Nichts-tun verändert das Gehirn: RUB-Neurowissenschaftler erweitern das Konzept der Neuroplastizität

Aus der Untersuchung von Profi-Musikern und erfahrenen Blindenschrift-Lesern ist bekannt, dass häufiger und intensiver Gebrauch der Hände zur Entwicklung außergewöhnlicher sensomotorischer Fähigkeiten führt.

Auch die Repräsentation der Hände auf der „Körperlandkarte“ im Gehirn vergrößert sich durch das Training. Allerdings funktioniert dieser Prozess auch umgekehrt, wie die neurowissenschaftliche Bochumer Arbeitsgruppe um Prof. Dr. Martin Tegenthoff (Neurologische Klinik Bergmannsheil) und PD Dr. Hubert Dinse (Institut für Neuroinformatik) jetzt festgestellt hat.

Wird eine Hand – etwa wegen eines Gipsarms – eine Weile nicht benutzt, verkleinert sich die Repräsentation im Gehirn und der Tastsinn lässt messbar nach.

Arm und Hand in Gips

Um herauszufinden, wie sich ein vorübergehender Nichtgebrauch der Hände auf das Gehirn und die Verhaltensleistungen auswirkt, untersuchten die Forscher eine Reihe von Patienten, die aufgrund eines Unfalls über mehrere Wochen hinweg einen Gips an Arm und Hand tragen mussten und die betroffene Hand im Alltagsgeschehen kaum benutzten. Das jeweilige Ausmaß der Benutzung von gesunder und betroffener Hand wurde durch Sensoren aufgezeichnet. Die Forscher maßen dann die Auswirkungen der Bewegungseinschränkungen zum einen auf die Organisation der Hand-Repräsentation im Gehirn und zum anderen auf den Tastsinn: Die Versuchspersonen sollten unterschiedlich eng beieinander stehende Nadelspitzen durch Ertasten mit dem Zeigefinger unterscheiden. In Abhängigkeit vom räumlichen Abstand werden beide Spitzen getrennt, oder bei zu geringem Abstand nur noch als eine einzelne Spitze wahrgenommen. Der Abstand, bei dem gerade noch zwei getrennte Spitzen wahrgenommen werden, ist ein Maß für die Güte des Tastsinns. Beide Messungen nahmen sie zweimal vor, das erste Mal zwei bis drei Wochen nachdem der Gips angelegt worden war, das zweite Mal zwei bis drei Wochen nach Gipsabnahme.

Tastsinn lässt merklich nach

Durch den Einsatz funktioneller Magnetresonanztomographie (fMRT) – ein bildgebendes Verfahren, das das Ausmaß der bei einer Tätigkeit aktiven Hirnbereiche sichtbar macht – konnten sie zeigen, dass eine Stimulation des Zeigefingers der betroffenen Hand eine wesentlich geringere Aktivität im entsprechenden Hirnbereich (somatosensorischer Kortex) auslöste als die Stimulation des Zeigefinger der gesunden Hand. Ebenso war der Tastsinn der betroffenen Hand im Vergleich zur gesunden Hand und zur Leistung gesunder Kontrollpersonen stark beeinträchtigt. Mit der betroffenen Hand nahmen die Versuchspersonen zwei Nadelspitzen noch als eine einzige wahr, auch wenn sie mit der gesunden Hand deutlich spürten, dass es sich um zwei Spitzen handelte.

Nach dem Gips ist vor dem Gips

Zwei bis drei Wochen nach der Gipsabnahme war von diesen Beeinträchtigungen nichts mehr festzustellen: Die Hirn-Repräsentation der ehemals betroffenen Hand unterschied sich nicht mehr von der gesunden Hand, und der Tastsinn verbesserte sich wieder auf das Niveau der gesunden Hand bzw. der Leistung gesunder Kontrollpersonen. „Schon wenige Wochen Nichtgebrauch von Hand und Fingern haben also messbare, negative Konsequenzen für Gehirnorganisation und sensomotorischen Leitungsfähigkeit des Menschen, die allerdings reversibel sind“, sagt Dr. Dinse. „Nicht-Benutzung wird demnach vom Gehirn genauso beantwortet wie intensivere Benutzung. Tut man nichts, passiert im Gehirn nicht nichts, sondern Gehirnfunktionen werden eingeschränkt“. Diese Resultate deuteten darauf hin, dass der kontinuierliche Strom von Sinneswahrnehmungen notwendig sein könnte, um eine effiziente Gehirnorganisation somatosensorischer Areale aufrechtzuerhalten und sensomotorische Leistungsfähigkeit zu ermöglichen.

Titelaufnahme

Silke Lissek, Claudia Wilimzig, Philipp Stude, Burkhard Pleger, Tobias Kalisch, Christoph Maier, Sören A. Peters, Volkmar Nicolas, Martin Tegenthoff, und Hubert R. Dinse. Immobilization Impairs Tactile Perception and Shrinks Somatosensory Cortical Maps, Current Biology (2009), doi:10.1016/j.cub.2009.03.065

Weitere Informationen

PD Dr. Hubert R. Dinse, Institut für Neuroinformatik, Lehrstuhl für Theoretische Biologie, Tel: 0234/32-25565, hubert.dinse@neuroinformatik.rub.de, tobias.kalisch@rub.de, http://www.neuralplasticitylab.de

Prof. Dr. Martin Tegenthoff, Neurologische Klinik und Poliklinik, BG-Universitätsklinikum Bergmannsheil, Tel: 0234/302-6808, martin.tegenthoff@rub.de

Redaktion: Meike Drießen

Media Contact

Dr. Josef König idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer