Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutrino-Teleskope fangen Signale von Meeressäugern auf

01.12.2010
Pottwale tummeln sich auch im Mittelmeer - das haben Biologen mithilfe eines Instrumentariums herausgefunden, das in der Tiefsee unvorstellbar winzigen und flüchtigen Besuchern der Erde auf der Spur ist: großen Unterwasserteleskopen, mit denen Physiker Signale von Neutrinos, beinahe masselosen Elementarteilchen, aus den Tiefen des Universums nachweisen wollen.

Aus den anfallenden Daten können Meeresbiologen die Geräusche der Wale herausfiltern. Das Erlangen Centre for Astroparticle Physics (ECAP) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) wird dabei sein, wenn die ungewöhnliche Querverbindung zwischen zwei Disziplinen am 1. und 2. Dezember 2010 in Paris diskutiert wird.

Die Wissenschaftlerinnen und Wissenschaftler des ECAP erforschen Neutrinos mit dem Teleskop ANTARES, das seit 2008 in der Nähe von Toulon in 2.475 Metern Tiefe vollständig aufgebaut ist und Tag und Nacht Daten sammelt, ähnlich wie NEMO vor Italien und NESTOR vor Griechenland. Am europäischen Gemeinschaftsprojekt KM3NeT, einem kubikkilometer großen Neutrino-Teleskop, das im Mittelmeer künftig mehr als eine Milliarde Tonnen Wasser beobachten soll, sind die Erlanger Astroteilchenphysiker ebenfalls maßgeblich beteiligt.

ANTARES überwacht etwa 30 Millionen Tonnen Wasser mittels Photomultipliern, die einzel-ne Photonen nachweisen und ihre Ankunftszeiten mit einer Genauigkeit von etwa einer Nano-sekunde messen können. Dadurch sollen Neutrinos aus astronomischen Quellen, die sich trotz ihrer ungeheuer großen Zahl der Beobachtung bisher hartnäckig entziehen, „sichtbar“ werden. Darüber hinaus könnte es sein, dass man Neutrinos buchstäblich „hören“ kann. Sie heizen das umgebende Wasser in einem sehr geringen Radius ein klein wenig auf, wenn sie ihre Energie in einer Teilchenkaskade abgeben. Dabei dehnt sich das Wasser gerade genug aus, um einen messbaren Schallpuls entstehen zu lassen. Außerdem lassen sich akustische Sensoren in größeren Abständen voneinander anbringen als optische, da sich Schall in Wasser weiter ausbreiten kann als Licht. Um zu testen, ob auf diese Weise noch gewaltigere Wassermengen auf Neutrino-Reaktionen zu untersuchen sind, wurden am ECAP akustische Sensoren und die zugehörige Ausleselektronik entwickelt und in ANTARES integriert. Seit Ende 2007 werden nun laufend akustische Daten aus der Tiefsee genommen.

Noch waren keine Signale von Neutrinos zu finden, doch andere Geräusche sind ständig vorhanden, denn in den Wassermassen des Mittelmeers ist es keineswegs still. Die europäischen Physiker, die mit Unterwasserteleskopen arbeiten, kamen auf die Idee, ihre Daten auch anderweitig zu verwerten und ihre Geräte mit Meeresbiologen zu teilen. Damit tragen sie dazu bei, ein bioakustisches Netzwerk zu entwickeln, das in der Tiefsee Signale aus der Umwelt auffängt.

Live-Walgesang im Internet
Wissenschaftlern aus anderen Disziplinen bietet sich dadurch nicht allein die Möglichkeit, Ausflüge von Walen ins Mittelmeer zu verfolgen; für langfristige Studien in der Tiefsee könnten spezielle Detektoren eingerichtet werden, beispielsweise um Ozeanströmungen zu untersuchen, die Rätsel der Biolumineszenz – des „kalten Leuchtens“ von Organismen – zu lösen oder Bewegungen der Erdkruste zu überwachen und rechtzeitig vor Erdbeben warnen zu können. Für Hobby-Ozeanologen wird etwas anderes besonders reizvoll sein: Sie können am Computer dem Gesang der Wale lauschen, und das sogar life. Die Internet-Platform LI-DO (Listen to the Deep Ocean) liefert die Daten mit einer minimalen Zeitverzögerung nach Hause (http://listentothedeep.com/).

Der Workshop im Palais de la Découverte in Paris des Europäischen Netzwerks für Astroteilchenphysik und CNRS/IN2P3 (ASPERA) mit dem Titel „From the Geosphere to the Cosmos” (Von der Erde zum Weltall) steht Vertreterinnen und Vertretern der Medien offen, die sich für die neu entdeckten Synergien von Umweltwissenschaften und Astroteilchenphysik interessieren. Am Mittwoch, 1. Dezember, findet zusätzlich um 16.15 Uhr eine Pressekonferenz am Tagungsort statt.

Das Erlangen Centre for Astroparticle Physics umfasst drei Lehrstühle aus dem Physikalischen Institut, die Wissenschaftler der Sternwarte in Bamberg und einen Lehrstuhl im Institut für Theoretische Physik. Im Mai 2008 wurde das ECAP eingeweiht.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“

Weitere Informationen für die Medien:
Dr. Robert Lahmann
Tel.: 09131/85- 27147
Robert.Lahmann@physik.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.ecap.physik.uni-erlangen.de/
http://www.ecap.physik.uni-erlangen.de/acoustics
http://listentothedeep.com/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics