Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronen durch Licht gesteuert

09.03.2010
Heisenberg-Professor Alexander Gottschalk gehört zu den Pionieren der Optogenetik, einem neuen Forschungszweig der Neurobiologie

Neuronale Netzwerke, insbesondere bei Säugetieren und Menschen, stellen die bei weitem kompliziertesten Systeme des Universums dar. Ein einzelnes der 100 Milliarden (1011) Neurone des Menschen kann mit bis zu 10.000 anderen Neuronen verschaltet sein. In seiner Gänze wird man dieses enorm komplexe System kaum verstehen können.

Doch ist es möglich, die Gehirnfunktion als das Zusammenspiel zahlreicher kleiner, 'elementarer' Schaltkreise zu verstehen. Prof. Alexander Gottschalk, seit Anfang März Heisenberg-Professor an der Goethe-Universität, untersucht die Funktion elementarer Nervenschaltkreise in einem einfachen Modellsystem, dem Fadenwurm Caenorhabditis elegans. In Zusammenarbeit mit der Gruppe von Prof. Ernst Bamberg am Max-Planck-Institut für Biophysik in Frankfurt hat er über gentechnische Methoden licht-aktivierbare Proteine aus Grünalgen beziehungsweise Bakterien in das Nervensystem des Wurmes 'verpflanzt'. Auf diese Weise gelang es, diese Nervenzellen durch Beleuchtung von außen zu aktivieren oder zu hemmen, so dass man Rückschlüsse auf ihre Funktionen ziehen kann.

Die Arbeiten Gottschalks haben maßgeblich zur Entwicklung eines neuen Forschungsgebiets in der Neurobiologie beigetragen, der sogenannten Optogenetik. Seine und ähnliche Ansätze zur Steuerung von Nervenzellen mit Licht werden inzwischen in zahllosen Laboren der Welt angewendet. Sie ziehen viele Studierende und begabte Nachwuchswissenschaftler an. Dabei hat das Labor von Gottschalk als erstes überhaupt die Anwendbarkeit (und Anwendung) optogenetischer Methoden in einem lebenden Tier zeigen können. C. elegans, ein mikroskopisch kleiner, durchsichtiger Fadenwurm, besitzt gerade mal 302 Nervenzellen, die durch Elektronenmikroskopie genau kartiert wurden. Obwohl der Wurm mit seinen circa 7.000 Synapsen weniger 'Verschaltungen' aufweist, als ein einzelnes menschliches Pyramidal-Neuron, findet man doch große Ähnlichkeiten zum Säuger, wenn man das Zusammenwirken der Neuronen betrachtet. So finden sich im Fadenwurm Interaktionen in Nervenzellen zur Geruchswahrnehmung, die analog zu Schaltkreisen in der Säuger-Retina funktionieren.

Die bei C. elegans erprobten Prinzipien der Nervensteuerung durch Licht könnten in absehbarer Zeit vielleicht auch beim Menschen anwendbar sein, zum Beispiel, um bei besonders starken Formen der Epilepsie oder der Parkinson'schen Krankheit Nervenzellen, die 'aus dem Ruder' laufen, mit Hilfe von Licht ruhigzustellen. "Das klingt futuristischer als es ist", versichert Gottschalk, denn bereits heute implantiere man zum gleichen Zweck Elektroden ins Hirn der Patienten - mit dem deutlichen Nachteil, dass man nicht bestimmen könne, welche Nervenzellen beeinflusst werden. Dadurch sind unerwünschte Nebeneffekten möglich. "Mithilfe der Optogenetik ließen sich ganz gezielt nur die erwünschten Neuronen ansteuern, ausserdem sind Lichtfasern viel dünner und weniger invasiv als Drahtelektroden", so Gottschalk. Weitere medizinische Anwendungen der Optogenetik stellen Versuche dar, durch Expression des Algenproteins ChR2 im Auge bestimmte Formen von Blindheit zu kurieren, bei denen die Photorezeptorzellen degenerieren (Retinitis pigmentosa).

Auch elementare Mechanismen der Kommunikation zwischen Neuronen mithilfe chemischer Botenstoffe (Neurotransmitter) ähneln sich bei Fadenwurm und Säugetieren, so dass sie sich auch in C. elegans (und dort um Einiges einfacher) untersuchen lassen. Gottschalks Arbeitsgruppe kann Nervenzellen mit Licht sehr präzise und mit geringem experimentellem Aufwand stimulieren. Auf diese Weise können molekulare Defekte in der Neurotransmissionsmaschinerie der Nervenzellen von genetischen Mutanten exakt charakterisiert werden. Die Gruppe benutzt weiterhin biochemische Methoden, um Proteinkomplexe und Organellen aus dem Nervensystem des Fadenwurms zu isolieren und dabei neue Proteine zu entdecken, die für die Nervensystemfunktion bedeutsam sind.

Alexander Gottschalk hat seit dem 1. März eine von der Deutschen Forschungsgemeinschaft geförderte Heisenbergprofessur inne. Er arbeitet am Institut für Biochemie der Goethe-Universität in Bereich 'molekulare Zellbiologie und Neurobiochemie' und ist zudem Adjunct Investigator im Exzellenzcluster Makromolekulare Komplexe. Nach einem Grundstudium der Chemie in Frankfurt (bei einigen Professoren, die heute seine Kollegen sind), führte ihn sein wissenschaftlicher Werdegang über Marburg, Edinburgh (UK) und San Diego (USA) 2004 zurück an die Goethe-Universität. Dort war er zunächst sechs Jahre lang Juniorprofessor für molekulare Membranbiologie am Institut für Biochemie. Prof. Gottschalk ist mit einer Apothekerin verheiratet, das Paar hat drei Töchter (sieben, sechs und ein Jahr/e alt).

Informationen: Prof. Alexander Gottschalk, Institut für Biochemie, Campus Riedberg, Tel: (069)798-29261, a.gottschalk@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics