Neuronaler „Wettbewerb“: TU Graz erforscht Speichertechnologien nach biologischem Vorbild

Neuronaler &quot;Wettbewerb&quot; bei der Entstehung von Erinnerung: das Gehirn als Vorbild für die Speichertechnologien der Zukunft. EPFL<br>

An diese fundamentalen Fragen knüpfen aktuelle Forschungen von Wolfgang Maass vom Institut für Grundlagen der Informationsverarbeitung der TU Graz an. Gemeinsam mit Stefan Klampfl vom Know-Center ist es ihm gelungen, in Computermodellen von neuronalen Schaltkreisen „Erinnerungsspuren“, wie sie auch im Gehirn entstehen, zu erzeugen. Sie haben festgestellt: Erinnerungsspuren entstehen durch eine Art „neuronalen Wettbewerb“. Die Arbeit wurde in der aktuellen Ausgabe des renommierten Journal of Neuroscience veröffentlicht.

Neue Experimente der Hirnforschung zeigen, dass Erlebnisse eine Art „Spur“ in Form von raum-zeitlichen Aktivierungsmustern in den neuronalen Netzwerken hinterlassen. „Raum-zeitlich bedeutet in dem Fall, dass man sich die Erinnerungsspur als Film mit zeitlichem Verlauf vorstellen kann. Bislang hat man angenommen, die Spur wäre ähnlich wie ein Foto ein statischer Eintrag im Gedächtnis. Auch künstliche, simulierte neuronale Netzwerke haben vorherrschend nach dem statischen Modell gearbeitet“, erklärt Wolfgang Maass vom Institut für Grundlagen der Informationsverarbeitung der TU Graz. Weltweit wollen Forscher das Entstehen dieser Spuren genauer verstehen, um in weiterer Folge Computern beizubringen, dieses Erinnerungsentstehen nachzuahmen und damit eine neue Art der Datenspeicherung zu ermöglichen. Wolfgang Maass und Stefan Klampfl ist dahin nun ein wichtiger Schritt gelungen: Sie konnten erstmals unter Annahme der „Erinnerungsspur als Film“ auch in Computermodellen ein derartiges Aktivierungsmuster in simulierten neuronalen Schaltkreisen erzeugen.

Wettbewerb der Neuronen

Konkret sind solche Erinnerungs-Spuren eine Abfolge von „neuronalem Feuern“, also Folgen von neuronalen Pulsen, die in den Synapsen als Muster gespeichert und bei ähnlichen Aktivierungen der Neuronen wieder hervorgerufen werden. Unter den einzelnen Nervenzellen im Gehirn herrscht eine Art Wettbewerb: Das jeweils aktivierte Neuron unterdrückt die Aktivität der anderen Neuronen in der unmittelbaren Umgebung – würde das nicht passieren, käme es zu ungesteuerten neuronalen „Feuerwerken“, die das Gehirn nicht verarbeiten kann. Wolfgang Maass und Stefan Klampfl haben festgestellt: Die Erinnerungsspuren kommen ebenfalls dank des Verdrängungswettbewerbes unter den Neuronen zustande. „Dieser neuronale Wettbewerb führt dazu, dass nur die am besten passende Spur, also das am besten zum Erlebnis passende Aktivierungsmuster der Neuronen, in den Synapsen ‚eingraviert‘ wird“, erläutert Maass.

Dynamische Erinnerungsspuren statt Bits und Bytes

Das bringt die Forscher vor die Herausforderung und bietet ihnen zugleich die Chance, die bisherige Methodik der Wissensspeicherung in digitalen Rechnern zu überdenken. Dort wird Information bislang nicht in raum-zeitlichen Mustern gespeichert, sondern als eine Abfolge von Bits, die bei Bedarf und mit Hilfe der richtigen Adresse von einem zentralen Speicher geholt wird. „Die große Frage, die nun im Raum schwebt: Können wir in künstlichen Wissensspeichern der Zukunft vielleicht auch anstelle von Bits und Bytes geeignete Aktivitätsmuster speichern?“, formuliert Maass die Fragestellung an die Forscher.

Vorarbeit für „Human Brain Project“

Die Arbeit von Wolfgang Maass und Stefan Klampfl bildet einen Grundbaustein für das „Human Brain Project“, einem EU-Flaggschiffprojekt im Bereich Gehirnforschung, das in den Startlöchern steht. Das Institut für Grundlagen der Informationsverarbeitung der TU Graz ist Vorreiter im Bereich der Grundlagenforschung von Datenanalyse und leitet im Human Brain Project das Arbeitspaket „Brain Computing Principles“. Stefan Klampfl ist Experte für Datenanalyse am Know-Center. Das Know-Center konzentriert sich auf angewandte Forschung speziell im Bereich Datenanalyse und transferiert die Erkenntnisse in die Wirtschaft.

Originalarbeit: Klampfl, S. and Maass, W. Emergence of dynamic memory traces in cortical microcircuit models through STDP
The Journal of Neuroscience, 10 July 2013, 33(28): 11515-11529;
doi: 10.1523/JNEUROSCI.5044-12.2013
http://www.jneurosci.org/content/33/28/11515.abstract
Bildmaterial bei Nennung der angeführten Quellen honorarfrei verfügbar unter
http://www.presse.tugraz.at/webgalleryBDR/data/Human%20Brain%20Project%202013/index.htm
Kontakt:
O.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass
Institut für Grundlagen der Informationsverarbeitung
Tel.: 0316 873 5822
Mobil: 0699 8845 3149
E-Mail: maass@igi.tugraz.at

Media Contact

Alice Senarclens de Grancy Technische Universität Graz

Weitere Informationen:

http://www.tugraz.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer