Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neurobiologie - Die Chemie der Erinnerung

21.11.2017

Lernen erfordert winzige Veränderungen an einzelnen Synapsen. Wissenschaftler haben nun aufgedeckt, wie ein RNA-Bindeprotein, das an diesen molekularen Prozessen beteiligt ist, das Gedächtnis beeinflusst.

Gedächtnisleistungen hinterlassen im Gehirn Spuren: Lernen und Erinnern sind nur möglich, weil die Verbindungen zwischen Nervenzellen – die Synapsen – fortwährend umgebaut werden. Die Baupläne für die dafür notwendigen Moleküle werden von sogenannten Boten-RNAs (mRNA) zielgerichtet zu den Synapsen transportiert.


Michael Kiebler untersucht die molekularen Prozesse des Lernens.

Bild: LMU/Joerg Koch

Der LMU-Biochemiker Michael Kiebler hat bereits in früheren Studien gezeigt, dass das mRNA-Bindeprotein Staufen2 dabei eine essenzielle Rolle spielt. Wie die molekularen Vorgänge im Gehirn sich in vivo auf das Lernen auswirken, ist allerdings noch unzureichend verstanden.

Nun ist Kiebler ein entscheidender Durchbruch gelungen: In Kooperation mit Dusan Bartsch (Universität Heidelberg) und spanischen Kollegen konnte er erstmals direkt nachweisen, dass ein Staufen2-Mangel das Gedächtnis auf spezifische Weise beeinträchtigt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Genome Biology.

Für ihre Untersuchungen entwickelten die Wissenschaftler in langjähriger Arbeit ein Tiermodell, in dem mithilfe von Antibiotika Staufen2 selektiv in Nervenzellen des Vorderhirns, insbesondere im Hippocampus, ausgeschaltet werden kann. In Verhaltensexperimenten testeten die Wissenschaftler dann das räumliche, zeitliche und assoziative Gedächtnis, mit dem abstrakte Inhalte verknüpft und abspeichert werden – also die Gedächtnisleistungen, die im Hippocampus verarbeitet werden.

Dabei zeigte sich, dass ohne Staufen2 bestimmte Funktionen gestört sind. „Das generelle Langzeitgedächtnis funktioniert zwar, die Ratten lernen beispielsweise, wo sich eine Futterquelle befindet“, sagt Kiebler. „Aber wenn das Gelernte erst nach längeren Wartezeiten abgerufen wird, ist die Gedächtnisleistung der Mutanten signifikant schlechter als die der Wildtypen.“

Ohne Staufen2 verändern sich die Zellmorphologie und die Synapsenfunktion. Mithilfe elektrophysiologischer Messungen analysierten die Wissenschaftler die Signalübertragung an den Synapsen und fanden, dass der Staufen2-Mangel die sogenannte Langzeit-Potenzierung (LTP) steigert und die sogenannteLangzeit-Depression (LTD) verhindert.

Unter LTP versteht man einen Mechanismus, der die Signalübertragung dauerhaft verstärkt und die Verknüpfung zwischen Synapsen festigt. Der gegenläufige Mechanismus LTD dagegen vermindert die Signalübertragung und entkoppelt bereits bestehende Verknüpfungen wieder. Grundsätzlich scheint die Synapse bei Staufen2-Mangel also leichter erregbar zu sein.

„LTP wird als zelluläres Modell für das Lernen angesehen, aber unsere Ergebnisse legen nahe, dass nicht nur die Anzahl der potenzierten Synapsen, sondern auch das richtige Verhältnis von LTP und LTD wichtig ist“, sagt Kiebler. Diese Balance ist ohne Staufen2 offensichtlich gestört. Die Wissenschaftler vermuten, dass zu viele Synapsen sehr stark potenziert und damit zu wenig reprimiert vorliegen. Das könnte dazu führen, dass Informationen, die normalerweise langfristig gespeichert werden, frühzeitig destabilisiert oder möglicherweise sogar entfernt werden.

„Mit unserer Arbeit ist es uns zum ersten Mal gelungen, ein Molekül – das RNA-Bindeprotein Staufen2 – mit der Funktion einer Synapse und dem Lernverhalten im Tier in Verbindung zu bringen“, schließt Kiebler. „Dieser Ansatz ermöglicht uns völlig neue Einblicke in die molekularen Mechanismen des Lernens.“
Genome Biology 2017

Publikation:
Forebrain specific, conditional silencing of Staufen2 alters synaptic plasticity, learning and memory in rats
Stefan M. Berger, Iván Fernández-Lamo, Kai Schönig, Sandra M. Fernández Moya, Janina Ehses, Rico Schieweck, Stefano Clementi, Thomas Enkel, Sascha Grothe, Oliver von Bohlen und Halbach, Inmaculada Segura, José María Delgado-García, Agnès Gruart, Michael A. Kiebler and Dusan Bartsch
Genome Biology 2017
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1350-8

Kontakt:
Professor Michael Kiebler
BioMedizinisches Centrum
Lehrstuhl Zellbiologie (Anatomie III)
Tel: (089) 2180 75 884
E-Mail: michael.kiebler@med.uni-muenchen.de
http://www.zellbio.anatomie.med.uni-muenchen.de/about_us/prof_kiebler/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics